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Abstract

The article introduces a modal logic for reasoning about combined ef-
fect of economic policies imposed on a group of rational agents. Modalities
in this language are labeled by policies applied to the players in a strategic
game. The resulting logical system allows to reason about properties that
are true in all Nash equilibria of the game modified by a specific policy.
The main technical result is the completeness theorem for the proposed
logical system.

1 Introduction

Motivation. Dynamic logic [7] provides a unified framework for reasoning
about outcomes of actions applied to different systems. In this article we propose
a framework for reasoning about outcomes of different economic policies imposed
on rational agents. At the core of our framework is the modal operator 2pϕ
which is intended to capture the statement “if economic policy p is imposed on
the rational agents, then statement ϕ will be true in all Nash equilibria of the
resulting system”1.

As an example, consider a situation when government evaluates two alter-
native tools to stimulate economy: a policy that lowers the tax rate by 1% and
a policy that lowers the federal discount rate by 1%. Of course, the government
can consider policies that use a combination of these two policies. For example,
by policy (2, 3) we mean lowering the tax rate by 2% and lowering the discount
rate by 3%. In this article we introduce a modal language to describe the effect

1Note that if policy p results in a game that has no Nash equilibria, then statement 2pϕ
is vacuously true.
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produced by different policies. For example, the statement

“unemployment rate is below 10%”→
2(2,3)“unemployment rate is below 5%” (1)

says that if the current unemployment rate is below 10%, then after the tax rate
is lowered by 2% and the discount rate is lowered by 3%, the unemployment
rate is guaranteed to be under 5%. The statement

“unemployment rate is below 10%”→
(¬2(2,0)¬“unemployment rate is below 5%”

∧¬2(2,0)“unemployment rate is below 5%”) (2)

says that if the current unemployment rate is below 10%, then reducing the
interest rate alone by 2% might result in an unemployment rate under 5%, but
one can not guarantee this. The next statement,

2(2,0)(“unemployment rate is below 7%”→
2(0,3)“unemployment rate is below 5%”) (3)

says that if 2% tax reduction alone can lower the unemployment rate to under
7%, then the decrease in the discount rate by additional 3% would further reduce
the unemployment rate to under 5%.

Game Formalism. The formal semantics of our logical system is based on
Nash equilibria of multi-player strategic games. Our logical system studies the
validity of statements in Nash equilibria of a game. We interpret different poli-
cies as adjustments to the utility functions of the game. As an example, consider
the utility functions ua and ub of the Prisoner’s Dilemma game depicted in Ta-
ble 1. Each of the strategies a1 and b1 is commonly referred to as “cooperation”

{ua, ub} b1 b2
a1 -2,-2 -6,0
a2 0,-6 -4,-4

Table 1: Utility functions for the Prisoner’s Dilemma game.

and each of the strategies a2 and b2 as “defection”. The state of a game could be
specified by the current set of utility functions and the current Nash equilibrium
of the game. The strategy profile (a2, b2) is the only Nash equilibrium of the
Prisoner’s Dilemma game. In this equilibrium both players have equal penalties
imposed on them. We formally write this as

({ua, ub}, 〈a2, b2〉) � “the players have equal penalties” (4)

Consider a policy (the adjustments to the utility functions) δ specified in Ta-
ble 2. If these adjustments are applied to the utility functions of the Prisoner’s
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δ b1 b2
a1 1,-1 -1,1
a2 -1,1 1,-1

Table 2: Policy (the set of adjustments) δ.

{u′a, u′b} b1 b2
a1 -1,-3 -7,1
a2 -1,-5 -3,-5

Table 3: Utility functions adjusted by policy δ.

Dilemma game, then the modified game, depicted in Table 3, has two Nash
equilibria: (a2, b1) and (a2, b2). In both of these equilibria the penalty imposed
on the first player is less than the penalty imposed on the second player. We
formally write this as

({ua, ub}, 〈a2, b2〉) � 2δ(“the first player has a smaller penalty”) (5)

Note that if policy δ is applied to the Prisoner’s Dilemma game twice, then the

{u′′a, u′′b } b1 b2
a1 0,-4 -8,2
a2 -2,-4 -2,-6

Table 4: Utility functions adjusted by policy 2δ.

resulting game, depicted in Table 4, has no Nash equilibria and, thus, statement

({ua, ub}, 〈a2, b2〉) � 22δ(“the first player has a smaller penalty”) (6)

is vacuously true.
Adjustment δ can be applied to the set of the utility functions not only

any positive integer number of times, but we can also consider adjustments
of the form pδ, where p is an arbitrary, possibly negative, real number. The
set of all such adjustments is closed with respect to compositions in the sense
that the adjustments pδ and qδ, applied together, are equivalent to adjustment
(p+ q)δ. If we only consider policies of the form pδ, then each such policy could
be identified with the real number p and the composition operation on policies
would correspond to the addition of real numbers. In such situations we write
2pϕ instead of 2pδϕ and say that the number p is the name of the policy pδ.

As another example, consider two possible adjustments δ1 and δ2 to the set
of the utility functions. Any linear combination p1δ1+p2δ2 of these adjustments
could also be viewed as a policy. Each such policy p1δ1+p2δ2 could be identified
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with (or named by) the pair p = (p1, p2) ∈ R2. The composition of two such
policies corresponds to the pair-wise (vector) addition in R2.

Adjustments to the set of utility functions do not have to be as simple as
addition or subtraction of certain values. Consider, for example, seven players
named 0, 1, 2, . . . , 6 sitting around a dining table. Each player i has her own
utility function ui. Possible adjustments to the set of utility functions could be
shifting the functions around the table by k positions:

uki (〈s0, . . . , s6〉) = ui′(〈s0, . . . , s6〉), (7)

where i′ ≡ k + i (mod 7). There are exactly seven such adjustments that can
be identified with (or named by) elements of Z7. The composition of these
adjustments corresponds to the addition operation in Z7.

Policy Groups. Above we have looked at examples of sets of policies that
can be naturally identified with (or named by) elements of R, R2, and Z7. In all
cases, the composition of policies would correspond to the addition operation
on the corresponding name space. We distinguish name spaces of policies and
the actual policies. To keep the presentation as general as possible, we assume
that the name space of policies is a triple consisting of an arbitrary set P , a
fixed element e ∈ P , and an abstract operation ∗ that satisfies the following
properties:

1. p ∗ (q ∗ r) = (p ∗ q) ∗ r, for all p, q, r ∈ P ,

2. p ∗ e = e ∗ p = p, for all p ∈ P ,

3. for every p ∈ P there is p−1 ∈ P such that p ∗ p−1 = p−1 ∗ p = e.

In abstract algebra, triple 〈P, e, ∗〉 is called a group. We call it a policy group.
Triples 〈R, 0,+〉, 〈R2, (0, 0),+〉, and 〈Z7, [0],+〉 are examples of different policy
groups.

Policy groups are name spaces that we use to identify different policies. They
are not the policies themselves. When specifying the semantics of our logical
system, we assign a specific policy (an adjustment to the set of utility functions)
to each element of the appropriate policy group. Once this assignment is chosen,
statement 2pϕ is interpreted as “after the policy (adjustment) named by p is
applied to the utility functions of players in the current game, the statement ϕ
is true in all Nash equilibria of the resulting game”. If policy p results in a game
that has no Nash equilibria, then statement 2pϕ is vacuously true. Further
details of this semantics are given in Definition 3.

For the sake of simplicity, in what follows, policy names are referred to as
simply “policies” when there is no confusion.

Modal Properties. Statements (1), (2), and (3) might be true or false de-
pending on the current economic situation. Claims (4), (5), and (6) could be
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true or false depending on the choice of the utility functions ua and ub as well
as on the choice of the policy assigned to the policy name p.

In this article we study universal properties of policies that are true in all
Nash equilibria of all strategic games based on a given policy group 〈P, e, ∗〉. A
trivial example of such a universal property is

2eϕ→ ϕ. (A1)

This property states that if statement ϕ is true in all Nash equilibria of the
non-adjusted game, then it is true in the current equilibrium as well, because,
as we will see later, policy e corresponds to no adjustments to the set of utility
functions.

Another such property is

2p∗qϕ→ 2p2qϕ. (A2)

The assumption of this statement is that property ϕ is true in each Nash equi-
libria after policies p and q are applied. The conclusion states that if only policy
p is applied, then statement ϕ will become true in each Nash equilibrium after
additional policy q is introduced. Note that the converse of the above property
is not true. Indeed, if policy p results in a game that has no Nash equilibria at
all, then statement 2p2qϕ is vacuously true. However, the combined policy p∗q
might have a Nash equilibrium in which statement ϕ is false. The converse does
become true if we also assume the existence of at least one Nash equilibrium
under policy p:

` ¬2p⊥ → (2p2qϕ→ 2p∗qϕ). (8)

A less trivial example of a universal policy property is

¬2p∗qϕ→ 2p¬2qϕ. (A3)

It states that if the combined policy p∗q might result in statement ϕ being false,
then after policy p is applied, an additional application of policy q might result
in statement ϕ being false too.

Under our formal semantics that we introduce in the next section, policy
named by p−1 will be the adjustment to the set of utility functions that retracts
changes made by policy p. Thus, one might expect the following statement to
be universally true 2p2p−1ϕ → ϕ. However, this statement is not necessarily
true because if policy p results in a game that has no Nash equilibria at all, then
statement 2p2p−1ϕ is vacuously true while statement ϕ may be false. Just like
it has been done in the case of statement (8), this issue could be addressed by
adding assumption ¬2p⊥:

` ¬2p⊥ → (2p2p−1ϕ→ ϕ). (9)

When modified this way, the statement indeed becomes universally true.
In general, the composition of adjustments to the set of utility functions is

not commutative. To illustrate this, consider a game between Alice and six
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other players sitting around a dining table. Suppose that all players have utility
functions that are equal to zero on all strategy profiles. If policy p increases
Alice’s payoff by £5 and policy q shifts utility functions around the table by
one position as defined in (7), then with composition q∗p Alice gets £5 and with
composition p ∗ q she does not. In our language, we can consider properties of
commutative policies by simply assuming that the policy group is commutative.
Such groups are called Abelian in abstract algebra. We call them Abelian policy
groups. The following property is true for all Abelian policy groups:

` ¬2p⊥ → (2p2qϕ→ 2q2pϕ). (10)

In this article we give a complete axiomatization of all universal modal prop-
erties of policies. Perhaps surprisingly, our logical system consists of only four
modal axioms. It includes axioms (A1), (A2), (A3), the distributivity axiom
2p(ϕ→ ψ)→ (2pϕ→ 2pψ), called axiom (A4), and propositional tautologies,
as well as Modus Ponens and Necessitation inference rules. In Section 4, we
prove that properties (8) and (9) are derivable in our system for any policy
group and property (10) is derivable for Abelian policy groups.

Related Works. The axioms of our logical system are axioms of the modal
logic S5 [5] with modalities labeled by policies. This is not a coincidence because
Nash equilibria in our setting could be viewed as Kripke worlds, thus connecting
our work to papers on the logic of public announcements [2] and the dynamic
epistemic logic [4]. A variety of approaches to combine modal logic with game
theory has been discussed in the literature before [3, 14, 10, 9]. See van der
Hoek and Pauly’s chapter [15] in the Handbook of Modal Logic for more works
in this area. None of these works considers policies and operations on them.

Wooldridge et al. [16] investigated influence of taxation on the preferences of
players in Boolean games. Although their setting is similar to ours, the focus of
their paper is on designing taxation schemes and on the complexity of algorithms
for finding such designs. They do not introduce any modal logical systems for
reasoning about taxation.

In their work on reasoning about social choice functions, Troquard et al. [13]
considered a social choice function as a special form of strategic games. They
proposed a complete logical system for reasoning about such games. The lan-
guage of their system has modality ♦Cϕ that stands for “coalition C can force
ϕ if players outside coalition C hold on to their current strategy” and modality
�iϕ that stands for “i locally (at the current reported profile) considers a re-
ported profile where ϕ is true at least as preferable”. Our work fundamentally
differs from theirs as we consider modalities labeled by policies (adjustments to
the set of utility functions).

Harrenstein et al. [8] proposed a modal logic for reasoning about Nash equi-
libria and proved its completeness. Their logic has three types of modalities
intended to capture the following meanings: (i) a statement holds in all states
at least as preferable to a given player as the present one, (ii) if all players
choose their prescribed strategies, then the game ends in a situation in which a
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given statement holds, and (iii) a given statement holds in all states that can be
reached if all but the given player are not allowed to deviate from the given set
of strategies. Their logical system has an expressive language and a non-trivial
set of axioms. However, they do not consider modalities that corresponds to
adjustments to utility functions.

Although in this article we focus on economic policies that can be expressed
as adjustments to the set of utility functions, one can also consider policies that
are constraints on possible behaviours of agents. Ågotnes et al. [1] described a
logical system, based on the temporal logic CTL, for reasoning about compliance
and different types of robustness in their non-game-theoretic setting. Halpern
and Weissman [6] investigated the use of first-order logic for reasoning about
non-economic policies, while Pucella and Weissman [12] used dynamic modal
logic in a similar setting.

Outline. The article is structured as follows. Section 2 introduces the formal
syntax and the game semantics of our logical system. In Section 3, we give
axioms of our system. In Section 4, we formally prove some of the statements
discussed in the introduction. In Section 5, we prove the soundness of our logical
system with respect to the game semantics. Section 6 is dedicated to the proof
of the completeness. We first introduce an auxiliary Kripke semantics for our
system and prove its completeness with respect to this semantics. Next, we
prove the completeness with respect to the original game semantics by showing
how a Kripke model can be modified into a set of policies on a strategic game.
Section 7 concludes by discussing possible extensions of our logical system for
the other types of policies.

2 Syntax and Semantics

In this section we define the language of our formal system and give the precise
definition of the policy semantics in terms of strategic games. Throughout the
whole article we fix a nonempty set V of propositional variables that represent
atomic statements about strategy profiles. An example of such a statement
from the Prisoner’s Dilemma game in the introduction is “the first player has a
smaller penalty”. Next we formally define the language of our logical system.

Definition 1 For any set P , let the language Φ(P ) be defined as follows:

ϕ ::= v | ϕ→ ϕ | ¬ϕ | 2pϕ,

where v ∈ V and p ∈ P .

As usual, we assume that ⊥ is an abbreviation for ¬(v → v) for some proposi-
tional variable v ∈ V .

We assign a utility function to each policy name. The utility function of
player i under policy p is denoted by upi . This assignment provides formal
semantics of policies.
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A strategic game is usually specified by a set of players, a set of possible
strategies for each player, and a utility function for each player. To incorporate
policies, our game definition includes utility function upi for each policy name
p and each player i. It also includes function ` that specifies semantics of
propositional variables.

Definition 2 For any given policy group 〈P, e, ∗〉, a tuple

〈N, {Ai}i∈N , {upi }
p∈P
i∈N , `〉

is called a multi-policy game (or just “game”) if

1. N is a finite set (of “players”),

2. Ai is a set of strategies or actions available to player i, for each i ∈ N ,

3. upi is the utility function from set S into real numbers, for each policy
p ∈ P and each i ∈ N , where S is set

∏
i∈N Ai whose elements are called

strategy profiles,

4. ` is a function from the set of propositional variables V into subsets of
S =

∏
i∈N Ai.

As commonly defined in the game theory literature [11, p.14], by a Nash
equilibrium of a strategic game 〈N, {Ai}i∈N , {ui}i∈N 〉 we mean a pure strategy
profile in which no player can unilaterally improve her payoff. In particular, we
do not assume that the equilibrium is strict.

For any multi-policy game G = 〈N, {Ai}i∈N , {upi }
p∈P
i∈N , `〉 and any q ∈ P ,

consider the strategic game 〈N, {Ai}i∈N , {uqi }i∈N 〉. By NE(G, q) we mean the
set of all (pure) Nash equilibria of this strategic game.

The next definition is the key definition of this article. It provides the
formal semantics for our modal operator. Since under any given policy the
system might have multiple equilibria, the semantics specifies the satisfiability
relation (q, f) � ϕ, where q ∈ P is the current policy and f ∈ NE(G, q) is the
Nash equilibrium of the game in which the multiagent system is at the current
moment.

Definition 3 For any policy group 〈P, e, ∗〉, any formula ϕ ∈ Φ(P ), any game

G = 〈N, {Ai}i∈N , {uqi }
q∈P
i∈N , `〉, any policy p ∈ P , and any f ∈ NE(G, p), let the

satisfiability relation (p, f) �G ϕ be defined as follows:

1. (q, f) �G v if f ∈ `(v),

2. (q, f) �G ¬ϕ if (p, f) 2G ϕ,

3. (q, f) �G ϕ→ ψ if (p, f) 2G ϕ or (p, f) �G ψ,

4. (q, f) �G 2pϕ if (q ∗ p, h) �G ϕ for each h ∈ NE (G, q ∗ p).

Note that if set NE(G, q ∗ p) in the item 4 above is empty, then statement
(q ∗ p, h) �G ϕ is vacuously true. We omit the subscript G in the relation �G,
when the value of this subscript is clear from the context.
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3 Axioms and Rules

For any fixed policy group 〈P, e, ∗〉, our logical system consists of the following
axioms for each p, q ∈ P and each ϕ,ψ ∈ Φ(P ):

(A1) 2eϕ→ ϕ,

(A2) 2p∗qϕ→ 2p2qϕ,

(A3) ¬2p∗qϕ→ 2p¬2qϕ,

(A4) 2p(ϕ→ ψ)→ (2pϕ→ 2pψ).

We write `〈P,e,∗〉 ϕ if formula ϕ is provable from the propositional tautologies
and the above axioms using Modus Ponens and Necessitation inference rules:

ϕ, ϕ→ ψ

ψ

ϕ

2pϕ
.

We write X `〈P,e,∗〉 ϕ if formula ϕ is provable from propositional tautologies,
the theorems of our system, and the additional set of axioms X using only the
Modus Ponens inference rule. We omit the subscript 〈P, e, ∗〉 when its meaning
is clear from the context.

4 Examples of Proofs

We prove the soundness of our logical system in the next section. In this sec-
tion we formally prove in our system properties (8), (9), and (10) from the
introduction.

Proposition 1 ` ¬2p⊥ → (2p2qϕ→ 2p∗qϕ), for each policy group 〈P, e, ∗〉.

Proof. Note that formula ¬2qϕ → (2qϕ → ⊥) is a propositional tautology.
Thus, by the Necessitation inference rule,

` 2p(¬2qϕ→ (2qϕ→ ⊥)).

Hence, by axiom (A4) and the Modus Ponens inference rule,

` 2p¬2qϕ→ 2p(2qϕ→ ⊥).

Thus, using axiom (A4) and the propositional reasoning,

` 2p¬2qϕ→ (2p2qϕ→ 2p⊥).

Note that ¬2p∗qϕ → 2p¬2qϕ is an instance of axiom (A3). Hence, by the
propositional reasoning,

` ¬2p∗qϕ→ (2p2qϕ→ 2p⊥).

Then, again by the propositional reasoning, ` ¬2p⊥ → (2p2qϕ→ 2p∗qϕ). �
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Proposition 2 ` ¬2p⊥ → (2p2p−1ϕ→ ϕ), for each policy group 〈P, e, ∗〉.

Proof. By Proposition 1,

` ¬2p⊥ → (2p2p−1ϕ→ 2p∗p−1ϕ).

Note that p ∗ p−1 = e due to properties of the group operation ∗. Thus,

` ¬2p⊥ → (2p2p−1ϕ→ 2eϕ).

Therefore, by axiom (A1) and the propositional reasoning,

` ¬2p⊥ → (2p2p−1ϕ→ ϕ).

�

Proposition 3 ` ¬2p⊥ → (2p2qϕ → 2q2pϕ), for each Abelian policy group
〈P, e, ∗〉.

Proof. By Proposition 1,

` ¬2p⊥ → (2p2qϕ→ 2p∗qϕ).

Thus, due to the commutativity of operation ∗ in Abelian groups,

` ¬2p⊥ → (2p2qϕ→ 2q∗pϕ).

Therefore, by axiom (A2) and the propositional reasoning,

` ¬2p⊥ → (2p2qϕ→ 2q2pϕ).

�

5 Soundness

In this section we prove the soundness of our logical system with respect to the
game semantics. The soundness of propositional tautologies and the Modus Po-
nens rule is straightforward. Below we show the soundness of each of the remain-
ing axioms and of the Necessitation rule as a separate lemma. In what follows,
we assume that 〈P, e, ∗〉 is a policy group and G = 〈N, {Ai}i∈N , {upi }

p∈P
i∈N , `〉 is

a multi-policy game. Also, let q ∈ P , f ∈ NE(G, q), and ϕ,ψ ∈ Φ(P ).

Lemma 1 If (q, f) � 2eϕ, then (q, f) � ϕ.

Proof. Suppose that (q, f) � 2eϕ. Thus, (q ∗ e, g) � ϕ for each g ∈ NE(G, q ∗ e)
by Definition 3. Hence, (q, g) � ϕ for each g ∈ NE(G, q) due to the equality
q ∗ e = q. In particular, (q, f) � ϕ. �

10



Lemma 2 If (q, f) � 2p∗rϕ, then (q, f) � 2p2rϕ.

Proof. Consider any g ∈ NE(G, q ∗ p). By Definition 3, it suffices to show
that (q ∗ p, g) � 2rϕ. Indeed, consider any h ∈ NE(G, (q ∗ p) ∗ r). Again by
Definition 3, we need to show that ((q ∗ p) ∗ r, h) � ϕ. Due to the associativity
of operation ∗, it suffices to prove that (q ∗ (p ∗ r), h) � ϕ. The latter is true due
to assumption (q, f) � 2p∗rϕ and Definition 3. �

Lemma 3 If (q, f) 2 2p∗rϕ, then (q, f) � 2p¬2rϕ.

Proof. Assumption (q, f) 2 2p∗rϕ, by Definition 3, implies that there is g ∈
NE(G, q ∗ (p ∗ r)) such that (q ∗ (p ∗ r), g) 2 ϕ. Thus, g ∈ NE(G, (q ∗ p) ∗ r) and
((q ∗ p) ∗ r), g) 2 ϕ due to the associativity of operation ∗.

Consider any h ∈ NE(G, q ∗p). By Definition 3, it suffices to prove that (q ∗
p, h) � ¬2rϕ. The latter, by Definition 3, is true because g ∈ NE(G, (q ∗ p) ∗ r)
and ((q ∗ p) ∗ r), g) 2 ϕ. �

Lemma 4 If (q, f) � 2p(ϕ→ ψ) and (q, f) � 2pϕ, then (q, f) � 2pψ.

Proof. Consider any g ∈ NE(G, q ∗ p). By Definition 3, it suffices to show that
(q ∗ p, g) � ψ. Indeed, by Definition 3, assumption (q, f) � 2p(ϕ → ψ) implies
that (q ∗ p, g) � ϕ→ ψ, and assumption (q, f) � 2pϕ implies that (q ∗ p, g) � ϕ.
Therefore, (q ∗ p, g) � ψ again by Definition 3. �

Lemma 5 If (r, g) � ϕ for all r ∈ P and all g ∈ NE(G, r), then (q, f) � 2pϕ.

Proof. Consider any h ∈ NE(G, q ∗ p). By Definition 3, it suffices to show that
(q ∗ p, h) � ϕ, which is true due to the assumption of the lemma. �

The next corollary states the soundness of our logical system with respect
to the game semantics.

Corollary 1 If `〈P,e,∗〉 ϕ, then (q, f) �G ϕ for each game G based on the policy
group 〈P, e, ∗〉, each q ∈ P , and each f ∈ NE(G, q).

6 Completeness

In this section we prove the completeness of our logical system with respect to
the game semantics � specified in Definition 3. This proof is achieved in two
steps. First, we define a class of Kripke models for our system and an auxiliary
Kripke semantics for our system. We denote this semantics by . Then, we
prove that the following three statements are equivalent for each policy group
〈P, e, ∗〉 and each ϕ ∈ Φ(P ):

(i) ` ϕ,
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(ii) (q, f) � ϕ, for each game G based on the policy group 〈P, e, ∗〉, each p ∈ P ,
and each Nash equilibrium f ∈ NE(G, p),

(iii) w  ϕ for each world w of each Kripke model based on the policy group
〈P, e, ∗〉.

The equivalence of these three statements is established by proving three impli-
cations:

(i) ⇒ (ii) The first of these statements implies the second statement due to
the soundness of our logical system with respect to the game semantics,
which has been shown in Section 5.

(ii) ⇒ (iii) In Section 6.3, we prove, by contrapositive, that the second state-
ment implies the third via constructing a strategic game based on any
given Kripke model. See Lemma 14 for details.

(iii)⇒ (i) Theorem 1 in Section 6.2 shows that the third statement implies the
first statement.

Combined together, these three results prove the equivalence of statements
(i), (ii), and (iii) above. We explicitly state the completeness result for the game
semantics in Section 6.4 as Theorem 2.

6.1 Kripke Semantics

In this section we introduce an auxiliary Kripke semantics for our logical system
that will eventually be used to prove the completeness theorem with respect to
the original game semantics.

Our model could be viewed as an extension of a standard S5 Kripke model
with an additional relation ;p for each policy p ∈ P . The equivalence relation
∼ partitions set W into equivalence classes. The accessibility relation ;p is
a relation between these classes which is assumed to satisfy special forms of
reflexivity, symmetry, transitivity, and functionality properties defined below.
Similar to S5 Kripke models, our model also includes function π that specifies
the set of worlds π(v) in which a variable v ∈ V is satisfied.

Definition 4 For any policy group 〈P, e, ∗〉, a tuple (W,∼, {;p}p∈P , π) is called
a Kripke model based on this policy group if the follow conditions are satisfied:

1. W is an arbitrary set of “worlds”.

2. ∼ is an equivalence relation on W . The equivalence class of an arbitrary
world w ∈W with respect to this relation is denoted by [w].

3. ;p is a binary relation on equivalence classes in W/∼ that satisfies the
following conditions for every p, q ∈ P and every w1, w2, w3 ∈W :

(a) Reflexivity: [w1] ;e[w1],

12



(b) Symmetry: if [w1] ;p[w2], then [w2] ;p−1 [w1],

(c) Transitivity: if [w1] ;p[w2] and [w2] ;q[w3], then [w1] ;p∗q[w3],

(d) Functionality: if [w1] ;p[w2] and [w1] ;p[w3], then [w2] = [w3].

4. π is an arbitrary function that maps propositional variables from V into
subsets of W .

v, u

v

u

w1
w2

w3
w4

p

q

q

Figure 1: A Kripke model.

An example of a Kripke model is depicted in Figure 1. This model has
four worlds: w1, w2, w3, and w4, partitioned into two equivalence classes with
respect to the relation ∼. The accessibility relation ; is represented by arrows
on this diagram. In this example, π(v) = {w1, w2} and π(u) = {w1, w3}.

Next we define a Kripke semantics for our logical system by specifying the
satisfiability relation w  ϕ. Recall that we use symbol  for the satisfiability
relation under the Kripke semantics and symbol � for the satisfiability relation
under the game semantics.

Definition 5 For any w ∈ W and any ϕ ∈ Φ(P ), the satisfiability relation
w  ϕ is defined recursively as follows:

1. w  v if w ∈ π(v), where v ∈ V ,

2. w  ¬ϕ if w 1 ϕ,

3. w  ϕ→ ψ if w 1 ϕ or w  ψ,

4. w  2pϕ if w′  ϕ for every w′ ∈W such that [w] ;p[w
′].

For example, w1  2p∗qv and w1  2p∗p⊥ for the Kripke model depicted in
Figure 1.

The soundness of our logical system under the Kripke semantics is implica-
tion (i)⇒ (iii), for statements (i) and (iii) that were defined at the beginning of
Section 6. We do not need to prove this result separately since it follows from
results (i) ⇒ (ii) and (ii) ⇒ (iii) that we show later in this section.

13



6.2 Completeness for Kripke Semantics

In this section we prove the completeness of our logical system with respect to
the Kripke semantics. The proof follows the general scheme of the completeness
proofs for modal logics with an addition of Definition 8 that specifies relation
;p in the canonical model.

We now define the canonical Kripke model (W,∼, {;p}p∈P , π) based on an
arbitrary policy group 〈P, e, ∗〉.

Definition 6 Set W consists of all maximal consistent subsets of Φ(P ).

Definition 7 w1 ∼ w2 if the following condition is satisfied: 2pϕ ∈ w1 iff
2pϕ ∈ w2 for each p ∈ P and each ϕ ∈ Φ(P ).

Corollary 2 ∼ is an equivalence relation on W . �

Definition 8 [w1] ;p[w2] if the following condition is satisfied: 2p∗qϕ ∈ w1 iff
2qϕ ∈ w2 for each q ∈ P and each ϕ ∈ Φ(P ).

Lemma 6 Relation [w1] ;p[w2] is well-defined.

Proof. Supposed that (i) statements 2p∗qϕ ∈ w1 and 2qϕ ∈ w2 are either both
true or both false, and (ii) w1 ∼ w′1 and w2 ∼ w′2. It is sufficient to show that
statements 2p∗qϕ ∈ w′1 and 2qϕ ∈ w′2 are either both true or both false. In-
deed, by assumption w1 ∼ w′1, statement 2p∗qϕ ∈ w1 is equivalent to statement
2p∗qϕ ∈ w′1. At the same time, by assumption w2 ∼ w′2, statement 2qϕ ∈ w1

is equivalent to statement 2qϕ ∈ w′1. �

The following lemmas verify reflexivity, symmetry, transitivity, and function-
ality properties from Definition 4 for the canonical Kripke model. In statements
of these lemmas, we assume that w1, w2, w3 ∈W and p, q ∈ P .

Lemma 7 [w1] ;e[w1].

Proof. Note that e ∗ q = q due to the identity property of element e. Thus,
2e∗qϕ ∈ w1 if and only if 2qϕ ∈ w1. �

Lemma 8 If [w1] ;p[w2], then [w2] ;p−1 [w1].

Proof. We need to show that 2p−1∗qϕ ∈ w2 if and only if 2qϕ ∈ w1. Note that
q = e ∗ q = (p ∗ p−1) ∗ q = p ∗ (p−1 ∗ q). Thus, statement 2qϕ ∈ w1 is equiva-
lent to statement 2p∗(p−1∗q)ϕ ∈ w1. The latter, by assumption [w1] ;p[w2] and
Definition 8, is equivalent to 2p−1∗qϕ ∈ w2. �

Lemma 9 If [w1] ;p[w2] and [w2] ;q[w3], then [w1] ;p∗q[w3].
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Proof. We need to show that 2p∗q∗rϕ ∈ w1 if and only if 2rϕ ∈ w3. Indeed, by
assumption [w1] ;p[w2], statement 2p∗q∗rϕ ∈ w1 is equivalent to 2q∗rϕ ∈ w2.
The last statement is equivalent to 2rϕ ∈ w3 by assumption [w2] ;q[w3]. �

Lemma 10 If [w1] ;p[w2] and [w1] ;p[w3], then [w2] = [w3].

Proof. Assume that [w1] ;p[w2] and [w1] ;p[w3]. Without loss of generality,
it is sufficient to show that if 2qϕ ∈ w2, then 2qϕ ∈ w3 for each q ∈ P and
each ϕ ∈ Φ(P ). Suppose that 2qϕ ∈ w2. Then it follows from assumption
[w1] ;p[w2] and Definition 8 that 2p∗qϕ ∈ w1. Therefore, 2qϕ ∈ w3, by as-
sumption [w1] ;p[w3] and Definition 8. �

Definition 9 π(v) = {w ∈W | v ∈ w}, for all v ∈ V .

This completes the definition of the canonical Kripke model (W,∼, {;p}p∈P , π).

Lemma 11 For any p ∈ P and any ϕ ∈ Φ(P ), if 2pϕ /∈ w1, then there is
w2 ∈W such that ϕ /∈ w2 and [w1] ;p[w2].

Proof. We first show that set

X0 = {¬ϕ} ∪ {2qψ | 2p∗qψ ∈ w1} ∪ {¬2rχ | ¬2p∗rχ ∈ w1}

is consistent. Assume the opposite. Then there are formulas 2p∗q1ψ1, . . . ,2p∗qnψn
and ¬2p∗r1χ1, . . . ,¬2p∗rmχm in w1 such that

2q1ψ1, . . . ,2qnψn,¬2r1χ1, . . . ,¬2rmχm ` ϕ.

Hence, by the Deduction theorem for propositional logic,

` 2q1ψ1 → (· · · → (2qnψn → (¬2r1χ1 → (· · · → (¬2rmχm → ϕ) . . . ))) . . . ).

By the Necessitation inference rule,

` 2p(2q1ψ1 → (· · · → (2qnψn → (¬2r1χ1 → (· · · → (¬2rmχm → ϕ) . . . ))) . . . )).

By axiom (A4) and the Modus Ponens inference rule,

2p2q1ψ1 ` 2p(2q2ψ2 → (· · · → (2qnψn → (¬2r1χ1

→ (· · · → (¬2rmχm → ϕ) . . . ))) . . . )).

By axiom (A2),

2p∗q1ψ1 ` 2p(2q2ψ2 → (· · · → (2qnψn → (¬2r1χ1

→ (· · · → (¬2rmχm → ϕ) . . . ))) . . . )).

By repeating the last two steps (n− 1) times,

2p∗q1ψ1, . . . ,2p∗qnψn ` 2p(¬2r1χ1 → (· · · → (¬2rmχm → ϕ) . . . )).
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By axiom (A4) and the Modus Ponens inference rule,

2p∗q1ψ1, . . . ,2p∗qnψn,2p¬2r1χ1

` 2p(¬2r2χ2 → (· · · → (¬2rmχm → ϕ) . . . )).

By axiom (A3),

2p∗q1ψ1, . . . ,2p∗qnψn,¬2p∗r1χ1

` 2p(¬2r2χ2 → (· · · → (¬2rmχm → ϕ) . . . )).

By repeating the last two steps (m− 1) times,

2p∗q1ψ1, . . . ,2p∗qnψn,¬2p∗r1χ1, . . . ,¬2p∗rmχm ` 2pϕ.

Recall that formulas 2p∗q1ψ1, . . . ,2p∗qnψn and ¬2p∗r1χ1, . . . , ¬2p∗rmχm are
in w1. Thus, w1 ` 2pϕ. Hence, 2pϕ ∈ w1 due to the maximality of set w1,
which contradicts to the assumption of the lemma that 2pϕ /∈ w1. Therefore,
set X0 is consistent. Let w2 be a maximal consistent extension of X0. Note
that ϕ /∈ w2 because ¬ϕ ∈ X0 ⊆ w2 and set w2 is consistent. By the choice of
X0, we have [w1] ;p[w2]. �

Lemma 12 w  ϕ if and only if ϕ ∈ w, for each formula ϕ ∈ Φ(P ) and each
world w ∈W of the canonical Kripke model.

Proof. We prove the lemma by induction on the structural complexity of formula
ϕ.

Case I: If formula ϕ is a propositional variable, then the required follows from
Definition 9 and Definition 5.

Case II: If formula ϕ is a negation or an implication, then the required follows,
in the standard way, from the induction hypothesis and Definition 5 due to the
maximality and consistency of set w.

Case III: If formula ϕ is of the form 2pψ for some p ∈ P and some ψ ∈ Φ(P ).
(⇒) : Suppose that 2pψ /∈ w. Thus, by Lemma 11, there is w′ ∈ W such that
[w] ;p[w

′] and ψ /∈ w′. Hence, by the induction hypothesis, w′ 1 ψ. Therefore,
w 1 2pψ by Definition 5.

(⇐) : Assume that w 1 2pψ. Thus, by Definition 5, there exists w′ ∈ W such
that [w] ;p[w

′] and w′ 1 ψ. Hence, by the induction hypothesis, ψ /∈ w′. Then
2eψ /∈ w′ due to axiom (A1) and the maximality of set w′. Thus, 2p∗eψ /∈ w
by Definition 8. Therefore, 2pψ /∈ w since p ∗ e = p. �

We are now ready to state and prove the completeness theorem for our logical
system with respect to the Kripke semantics.

Theorem 1 For any ϕ ∈ Φ(P ), if w  ϕ for each world w ∈W of each Kripke
model (W,∼, {;p}p∈P , π) based on policy group 〈P, e, ∗〉, then ` ϕ.
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Proof. Suppose that 0 ϕ. Let w be any maximal consistent subset of Φ(P ) such
that ¬ϕ ∈ w. Then, w 1 ϕ by Lemma 12. �

6.3 Canonical Game

In this section, for a given Kripke model K = (W,∼, {;p}p∈P , π) based on the
policy group 〈P, e, ∗〉, we define a canonical multi-policy game. Our goal is to
define the game in such a way that an arbitrary formula is true in an arbitrary
world if and only if this formula is true in a “corresponding” Nash equilibrium
of the game. This “correspondence” is formally specified in Lemma 14.

The canonical game GwK is defined for each world w ∈ W . The game has
three players. The first player has the set of all worlds W as her strategies.
Under the policy p, she is rewarded to choose a strategy s1 ∈ W such that
[w] ;p[s1] is true in the Kripke model K. If such a world s1 does not exist, the
two other players are paid to play the matching pennies game. In this case the
canonical game has no Nash equilibria under the policy p. Now we define the
canonical game GwK = 〈N, {Ai}i∈N , {upi }

p∈P
i∈N , `〉 formally.

Definition 10 The set of players N consists of three players: 1, 2, and 3.

Definition 11 The set of strategies Ai available to a player i ∈ N is defined as
follows:

1. A1 = W ,

2. A2 = A3 = {head, tail}.

The next three definitions specify the utility functions for the players.

Definition 12

up1(〈s1, s2, s3〉) =

{
1, if [w] ;p[s1],

0, otherwise.

Definition 13

up2(〈s1, s2, s3〉) =

{
1, if s2 = s3 or there is w′ ∈W such that [w] ;p[w

′],

−1, otherwise.

Definition 14

up3(〈s1, s2, s3〉) =

{
1, if s2 6= s3 or there is w′ ∈W such that [w] ;p[w

′],

−1, otherwise.

Our intention is for a propositional variable to be satisfied in a Nash equi-
librium 〈s1, s2, s3〉 of the canonical game if and only if it is satisfied in the
world s1 of the Kripke model K. Thus, we explicitly define the satisfiability of
propositional variables in strategy profiles accordingly.
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Definition 15 `(v) = {〈s1, s2, s3〉 | s1 ∈ π(v)}, for each v ∈ V .

This concludes the definition of the canonical game GwK. The next lemma
describes the set of Nash equilibria of the canonical game.

Lemma 13 NE(GwK, p) = {〈s1, s2, s3〉 ∈ A1 ×A2 ×A3 | [w] ;p[s1]}.

Proof. First, assume that [w] ;p[s1]. In this case, according to Definition 12,
Definition 13, and Definition 14, all three players have the maximal possible
payoff 1. Hence, 〈s1, s2, s3〉 ∈ NE(GwK, p).

Next, suppose that it is not true that [w] ;p[s1]. There are two cases to
consider.
Case I: If there exists w′ ∈ W such that [w] ;p[w

′], then 〈s1, s2, s3〉 is not a
Nash equilibrium because player 1 can switch strategy from s1 to w′ to increase
her payoff.
Case II: If there is no w′ ∈ W such that [w] ;p[w

′], then players 2 and 3 are
playing the matching pennies game. Since the matching pennies game has no
pure Nash equilibria, 〈s1, s2, s3〉 /∈ NE(GwK, p). �

The next lemma connects the satisfiability relation for the Kripke model K
and the satisfiability relation for the canonical game GwK.

Lemma 14 (p, 〈s1, s2, s3〉) � ψ if and only if s1  ψ, for each ψ ∈ Φ(P ), each
p ∈ P and each 〈s1, s2, s3〉 ∈ NE(GwK, p).

Proof. We prove the lemma by induction on the structural complexity of formula
ψ.

Case I: Assume that ψ is a propositional variable v ∈ V . Statement (p, 〈s1, s2, s3〉) �
v is equivalent to 〈s1, s2, s3〉 ∈ `(v), by Definition 3. The latter, by Definition 15,
is equivalent to s1 ∈ π(v), which, by Definition 5, is equivalent to s1  v.

Case II: If formula ψ is a negation or an implication, then the required follows
from Definition 5, Definition 3, and the induction hypothesis.

Case III: Suppose that formula ψ has form 2qχ.
(⇐) : Assume that s1 1 2qχ. By Definition 5, there is a world u ∈ W such
that u 1 χ and [s1] ;q[u]. By the assumption of the lemma, 〈s1, s2, s3〉 ∈
NE(GwK, p). Thus, [w] ;p[s1] by Lemma 13. By the Transitivity condition from
Definition 4, we have [w] ;p∗q[u]. Then, by Lemma 13, 〈u, 1, 1〉 ∈ NE(GwK, p∗q).
By the induction hypothesis, statement u 1 χ implies that (p ∗ q, 〈u, 1, 1〉) 2 χ.
Therefore, by Definition 3, (p, 〈s1, s2, s3〉) 1 2qχ.

(⇒) : Assume that (p, 〈s1, s2, s3〉) 2 2qχ. Hence, by Definition 3, there exists
〈s′1, s′2, s′3〉 ∈ NE(GwK, p ∗ q) such that (p ∗ q, 〈s′1, s′2, s′3〉) 2 χ. Note that by
Lemma 13, [w] ;p∗q[s

′
1]. Hence, by the induction hypothesis, s′1 1 χ.

By the assumption of the lemma, 〈s1, s2, s3〉 ∈ NE(GwK, p). Then, [w] ;p[s1]
by Lemma 13. By the Symmetry condition from Definition 4, we have [s1] ;p−1 [w].
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Thus, by the Transitivity condition from Definition 4, [s1] ;p−1∗(p∗q)[s
′
1]. By ba-

sic properties of group operation ∗, we have p−1∗(p∗q) = (p−1∗p)∗q = e∗q = q.
Hence, [s1] ;q[s

′
1]. Therefore, s1 1 2qχ by Definition 5. �

6.4 Completeness: Final Step

In this section we formally state and prove the completeness theorem for our
system with respect to the game semantics.

Theorem 2 For any policy group 〈P, e, ∗〉 and any ϕ ∈ Φ(P ), if (q, f) � ϕ for

each multi-policy game G = (N, {Ai}i∈N , {upi }
p∈P
i∈N , `) and each f ∈ NE(G, p),

then ` ϕ.

Proof. Suppose that 0 ϕ. Thus, by Theorem 1, there is a world w ∈ W of a
Kripke model K = (W,∼, {;p}p∈P , π) with the policy group 〈P, e, ∗〉 such that
w 1 ϕ. Consider the canonical game GwK. Note that [w] ;e[w] due to the Re-
flexivity condition in Definition 4. Hence, 〈w, 1, 1〉 ∈ NE(GwK, e), by Lemma 13.
Therefore, (e, 〈w, 1, 1〉) 2 ϕ by Lemma 14. �

7 Discussion

In this article we introduced a logical system for reasoning about economic
policies and proved the completeness of this system with respect to a strategic
game semantics. So far, we have only considered policies that can be expressed
as adjustments to utility functions in strategic games. In conclusion, we would
like to briefly discuss how our approach could be adapted to some of other types
of economic policies.

One of the monetary tools commonly employed by central banks to regu-
late economy is buying and selling reserve assets (such as bonds). This policy
could be represented in a similar setting by considering the government as a
special player in the game. Enforcing a policy in this setting corresponds to the
government committing to a particular strategy in the game.

The other common monetary tool consists of regulating how much money
banks must keep in reserve and, thus, not make available for loans. This type
of policies could be represented as a change to the sets of strategies accessible
to the players.

Both extensions described above would require a non-trivial modification in
the syntax and game semantics of our system. The completeness theorem for
either extension remains an open problem.
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