
Secrecy-preserving Query Answering for
Instance Checking in EL

Jia Tao, Giora Slutzki, and Vasant Honavar

Iowa State University, Ames, IA, USA

Abstract. We consider the problem of answering queries against an
EL knowledge base (KB) using secrets, whenever it is possible to do so
without compromising secrets. We provide a polynomial time algorithm
that, given an EL KB Σ, a set S of secrets to be protected and a query
q, outputs “Yes” whenever Σ � q and the answer to q, together with the
answers to any previous queries answered by the KB, does not allow the
querying agent to deduce any of the secrets in S. This approach allows
more flexible information sharing than is possible with traditional access
control mechanisms.

1 Introduction

The rapid expansion of the World Wide Web and the widespread use of dis-
tributed databases and networked information systems offer unprecedented op-
portunities for productive interaction and collaboration among individuals and
organizations in virtually every area of human endeavor. However, the need to
share information has to be balanced against the need to protect secrets. Such
scenarios call for algorithms that can, given a knowledge base Σ and a set S of
secrets (perhaps specified using some secrecy policy), answer queries against Σ,
using secrets if necessary, whenever it is possible to do so without compromis-
ing secrets (See Example 1 in Sect. 2). Most existing approaches to information
protection simply forbid the use of secret information in answering queries (See
Sect. 4). The privacy-preserving reasoning framework introduced in [1] was mo-
tivated by the need to alleviate, at least in part, this limitation in the simple
setting of hierarchical knowledge bases (KBs) under the open world assumption
(OWA)1. Such KBs may contain scientific, medical, economic information, or
military intelligence, etc. Our secrecy-preserving reasoning framework builds on,
and substantially extends, the framework introduced by Bao et al. [1].

In general, the answer to a query q of the form C(a) or r(a, b) against a KB
Σ can be “Yes” (i.e., q can be inferred from Σ), “No” (¬q can be inferred from
Σ) or “Unknown” (e.g., because of the incompleteness of Σ). We assume coop-
erative as opposed to adversarial scenarios where the KB does not lie. However,

1 Under the closed world assumption a statement that cannot be inferred from the KB
to be true, is presumed to be false. Under the OWA, the truth of such a statement
is presumed to be unknown, and not necessarily false.

whenever truthfully answering a query risks compromising secrets in S, the rea-
soner associated with the KB is allowed to feign ignorance, i.e., answer the query
as “Unknown”. Given a set of secrets S (which need not be a subset of Σ), it is
clear that, to protect S, answers to queries in S will be “Unknown”. However,
in general, it is not sufficient to protect only S since truthful answers to certain
queries (not in S) may reveal information in S. Therefore, we must protect a
superset of S, which we call an envelope of S, such that the querying agent who
has no access to the envelope will not be able to deduce any information in S.

In this paper, we investigate secrecy-preserving query answering with EL [2],
which is one of the simplest DLs that is both computationally tractable [3, 4]
and practically useful [2]. For example, the medical ontology Snomed ct [5]
and large parts of the medical ontology Galen [6] can be expressed in EL.
We provide algorithms to answer queries against an EL KB that use, but not
reveal, the information that is designated as secret. Because of the open world
assumption and the fact that the language of EL does not include negation, the
answer to a query can only be “Yes” or “Unknown”.

To answer queries posed to the KB, we construct a secrecy maintenance
system that consists of: a finite set of consequences of the KB Σ, denoted by
A∗, and a secrecy envelope S ⊆ ES ⊆ A∗. The answer to a query q is censored by
the reasoner if q ∈ ES. It is easy to see that a secrecy envelope always exists. For
instance, A∗ constitutes an envelope for any secrecy set S ⊆ A∗. A key challenge
is to develop strategies that can be used by the KB to respond to queries as
informatively as possible (i.e., using an envelope that is as small as possible)
without compromising secrets that the KB is obliged to protect. Unfortunately,
computing a minimum envelope is NP-hard [7]. We computeA∗ using the (usual)
tableau expansion rules. To compute ES, we introduce the following idea. From
each original expansion rule, we construct a corresponding inverse expansion
rule. We show that the inverted system of expansion rules generates an envelope
of S. To the best of our knowledge, the idea of constructing a secrecy envelope
by inverting the tableau expansion rules is novel. Furthermore, we introduce a
couple of useful optimizations that help reduce the size of an envelope.

2 Preliminaries

The non-logical signature of the EL description language includes three mutually
disjoint sets: concept names NC , role names NR and individual names NO. The
syntax of EL is defined by specifying expressions and formulae. EL expressions
consist of NR and the set of concepts C recursively defined as follows:

C,D −→ A | > | C uD | ∃r.C

where A ∈ NC , > is the top symbol, C,D ∈ C and r ∈ NR. In this paper
we consider three kinds of EL formulae: assertions of the form C(a) or r(a, b),
definitions of the form A

.
= D and general concept inclusions (GCI) of the form

C v D where a, b ∈ NO, C,D ∈ C, r ∈ NR and A ∈ NC .

2

The semantics of EL is specified by means of an interpretation I = 〈∆, ·I〉
where ∆ is a non-empty domain and ·I is a function that maps each individual
name to an element in ∆, each concept name to a subset of ∆ and each role
name to a subset of ∆×∆. The interpretation of concept expressions is extended
recursively: for r ∈ NR and C,D ∈ C: (C uD)I = CI ∩DI and (∃r.C)I = {a ∈
∆ | ∃b ∈ ∆ : (a, b) ∈ rI ∧ b ∈ CI}.

A finite non-empty set of assertions is called an ABox. A finite set of defi-
nitions and GCIs is called a TBox. An ABox A and a TBox T whose concepts
and roles belong to the language EL form an EL-knowledge base Σ = 〈A, T 〉.
A TBox T is normalized [3] if T contains only GCIs all of which are of one
of the following forms: A v B, A1 u A2 v B, A v ∃r.B or ∃r.A v B where
A,A1, A2, B ∈ NC ∪ {>}. It was shown that transforming a TBox into such
a normal form can be accomplished in polynomial time [3]. From now on, we
will assume that all the TBoxes are in normal form. By NΣ (resp. OΣ) we de-
note the set of all symbols (resp. individual names) occurring in Σ. Note that
OΣ ⊂ NO ∩NΣ and NΣ \ OΣ ⊂ NC ∪NR.

Definition 1. Let Σ = 〈A, T 〉 be a knowledge base, I = 〈∆, ·I〉 an interpre-
tation, C,D ∈ C, r ∈ NR and a, b ∈ NO. I satisfies C(a), r(a, b), or C v D
if, respectively, aI ∈ CI , (aI , bI) ∈ rI , or CI ⊆ DI . I is a model of Σ if it
satisfies all the assertions in A and all the GCIs in T . Let α be an assertion or
a GCI. We say that Σ entails α, written as Σ � α, if all models of Σ satisfy α.

Example 1. (a simplified version adapted from [8]) Given a KB Σ1 = 〈A1, T1〉
that contains information on the patients, their health history, the prescriptions
that they get from the physicians and their insurance information. Suppose that
Jane’s mother Jill had breast cancer and that Jane tests positive for BRCA1
mutation which is linked to an increased risk of breast cancer. To reduce the
breast cancer risk, Jane was prescribed a certain drug. Jane purchases the med-
ications from her pharmacy and wants to get reimbursed for the cost of her
prescription by her insurance company. If her insurance company finds out that
she has tested positive for BRCA1 mutation or that she has been prescribed
certain drug(s) for breast cancer, Jane risks losing her health insurance. The
scenario can be formally specified in the DL EL as follows:

1. ∃is child.A v CancerRisk 7. A v HasCancer
2. HasMutBRCA1 v ∃has pres.CancerDrug 8. Woman uHasCancer v A
3. ∃has pres.CancerDrug v CancerRisk 9. Woman(Jill)
4. ∃has pres.CoveredDrug v Reimburse 10. HasCancer(Jill)
5. CancerDrug v CoveredDrug 11. is child(Jane, Jill)
6. A vWoman 12. HasMutBRCA1(Jane)

The GCIs 1-8 form a subset of T1 (in normal form) and the assertions 9-
12 form a subset of A1. In order for Jane to get reimbursed, when the query
Reimburse(Jane) is posed to the KB, the answer should be “Yes”. However, in
order to protect Jane’s privacy, the query CancerRisk(Jane) should be answered
“Unknown”. �

3

3 The Secrecy-preserving Query Answering

Problem Statement: Given a knowledge base Σ and a finite secrecy set S, the
basic goal is to answer queries while preserving secrecy. As shown in Example
1, to protect Jane’s privacy, the query CancerRisk(Jane) should be answered
“Unknown”. However, by only keeping CancerRisk(Jane) secret, the fact that
Jane has cancer risk can still be inferred by statements 12, 2 and 3. Therefore,
the secrecy-preserving query answering problem is to find a superset of S, which
we call the secrecy envelope of S, denoted by ES, so that by protecting ES, the
querying agent cannot conclude anything in S. Because of the OWA, when the
answer to a query is “Unknown”, the querying agent is not able to distinguish
between (a) the answer to the query is truly unknown, or (b) the answer is being
protected for reasons of secrecy.

The framework contains following components. We assume a KB Σ = 〈A, T 〉,
a reasoner R that is complete, and a secrecy set S consisting of a finite set of
assertions that contain only symbols from NΣ . R is used to answer queries
by checking whether the query can be inferred from Σ and if it can, whether
answering “Yes” will reveal secrets from S. The specific tasks are:

– To compute the set SubC of sub-expressions of all concepts and roles appear-
ing in Σ or S.

– To compute the set of all assertional consequences of Σ restricted to SubC.
This set is called the assertional closure of Σ and it is denoted by A∗. We
assume that S ⊆ A∗.

– To compute the secrecy envelope S ⊆ ES ⊆ A∗, a set of assertions which if
truthfully answered, may reveal some secret(s) in S.

– To answer queries. If a query cannot be inferred from Σ, the answer is simply
“Unknown”. If it can be inferred and it is not in ES, the answer is “Yes”;
otherwise, the answer is “Unknown”.

We also assume that the querying agent (i) asks queries of the form C(a)
or r(a, b); (ii) has computational access only to the signature of the knowledge
base, i.e., its queries are over NΣ ; and (iii) has the same reasoning capacity as
R (Since we assume that R is complete, this is not a restriction.); (iv) may log
the history of all the answers to its queries and draw conclusions from it; and
(v) has access to the TBox T .
A∗ and ES form a secrecy maintenance system. Note that the both are re-

stricted to SubC. Once A∗ and ES have been computed, if C ∈ SubC, R can
answer the query C(a) in linear time depending on its membership of A∗ and
ES. Otherwise, we need to expand SubC by adding sub-expressions of C that are
not in SubC and update the consequences A∗ as well as ES accordingly.

3.1 Initializing Secrecy Maintenance System

Computing SubC: The set of certain sub-expressions of all the concepts and
roles appearing in Σ or S, is defined as follows:

4

if C(a) ∈ A ∪ S, then C ∈ SubC; if C v D ∈ T , then {C,D} ⊆ SubC;
if r(a, b) ∈ A ∪ S, then r ∈ SubC; if ∃r.C ∈ SubC, then {r, C} ⊆ SubC;
if C1 u · · · u Ck ∈ SubC(Ci ∈ NC or Ci = ∃r.C), then Ci ∈ SubC(1 ≤ i ≤ k);
if ∃r.C ∈ SubC and C v D ∈ T or D v C ∈ T , then ∃r.D ∈ SubC.

Note that SubC does not contain all the sub-expressions of concepts appearing
in Σ or S. If a query C(a) comes along where C /∈ SubC, it will be added into
SubC. As such, the secrecy maintenance system is built up gradually depending
on the history of queries. Also note that the initial size of SubC is linear in the
size of the knowledge base Σ plus the size of the secrecy set S.

Computing A∗: The ABox A∗ is initialized as A and expanded by recursively
applying assertion expansion rules listed in Fig. 1. We say thatA∗ is assertionally
closed or that it is an assertional closure of Σ if no assertion expansion rule is
applicable. The set of all the individual names appearing in A∗ is denoted by
O∗. It is initialized as OΣ and is expanded with applications of the ∃A2 -rule.
An individual a is said to be fresh (at a particular time during the expansion
process) if a ∈ NO \ O∗ (at that time). An individual a ∈ O∗ is blocked by an
individual b ∈ O∗ if a ∈ O∗ \ OΣ , b is either in OΣ or b was picked earlier than
a (during the expansion process), and {C | C(a) ∈ A∗} ⊆ {C ′ | C ′(b) ∈ A∗}.
Recall that we have assumed that the querying agent has computational access
only to the signature of the knowledge base. In particular, the querying agent
cannot ask any queries that involve individual names in O∗\OΣ . This is referred
to as Hidden Names Assumption (HNA).

uA1 -rule: if C1 u · · · u Ck(a) ∈ A∗ and Ci(a) /∈ A∗,
then A∗ := A∗ ∪ {Ci(a)} where 1 ≤ i ≤ k;

uA2 -rule: if {C1(a), ..., Ck(a)} ⊆ A∗, C1 u · · · u Ck ∈ SubC
and C1 u · · · u Ck(a) /∈ A∗, then A∗ := A∗ ∪ {C1 u · · · u Ck(a)};

∃A1 -rule: if {r(a, b), C(b)} ⊆ A∗,∃r.C ∈ SubC and ∃r.C(a) /∈ A∗,
then A∗ := A∗ ∪ {∃r.C(a)};

∃A2 -rule: if ∃r.C(a) ∈ A∗, a is not blocked and ∀b ∈ O∗, {r(a, b), C(b)} * A∗,
then A∗ := A∗ ∪ {r(a, c), C(c)} where c is fresh, and O∗ := O∗ ∪ {c};

vT -rule: if C(a) ∈ A∗, C v D ∈ T and D(a) /∈ A∗, then A∗ := A∗ ∪ {D(a)};

Fig. 1. Assertion Expansion Rules

We denote by Λ the tableau algorithm which nondeterministically applies
assertion expansion rules until no further applications are possible. Since each
expansion rule can be applied polynomially many times (in the size of SubC),
the computation of A∗ can be done in polynomial time. When an execution
of Λ terminates, we have an assertionally closed ABox A∗. The soundness and
completeness of the Λ-tableau algorithm are proved in [7].

5

Ignoring the issue of secrecy, we point out a difference between the reasoning
of the KB reasoner R and that of the querying agent. Consider the assertion
∃r.C(a) ∈ A∗ when a is not blocked and there does not exist b ∈ OΣ for which
{r(a, b), C(b)} ⊆ A∗. In this case R picks a fresh individual name c /∈ OΣ as
a witness for the inclusion ∃r.C(a) ∈ A∗. The querying agent only knows the
existence of the witness individual and not the individual name itself. Of course,
for its own reasoning process, the querying agent may pick any individual name in
NO\OΣ , say d, and then force r(a, d) and C(d) to be consequences of Σ. Clearly,
the reasoner R and the querying agent are not aware of each other’s “fresh”
individual names. To differentiate the assertional closure of the KB reasoner R
from the reasoning of the querying agent, we will use ·+ to denote the latter.
Computing the Secrecy Envelopes: We define the secrecy envelope ES such
that if the reasoner R answers every query in ES with “Unknown” and every
query in A∗ \ ES with “Yes”, the querying agent will not be able to deduce any
assertions in S.

Definition 2. Given a knowledge base Σ = 〈A, T 〉 and a finite secrecy set S ⊆
A∗, a secrecy envelope of S, denoted by ES, is a superset S ⊆ ES ⊆ A∗ such that
(A∗ \ ES)+ ∩ S = ∅ where (A∗ \ ES)+ is the assertional closure of the knowledge
base 〈A∗ \ ES, T 〉 for the querying agent.

To answer queries as informatively as possible, we aim to make ES as small as
possible. Unfortunately, to compute a minimum envelope is hard. Specifically,
the decision version of the problem of computing minimum envelopes is NP-
complete [7]. In what follows, we provide an algorithm that computes envelopes.
Utilizing the HNA, we further optimize the algorithm to result a smaller enve-
lope. To compute an envelope, we introduce the novel idea of inverting assertion
expansion rules. For EL with TBox, we have five assertion expansion rules as
listed in Fig. 1. For each assertion expansion rule, the resulting inverse rule is
named by changing the superscript in the name of the original rule to S. These
inversion rules are called R-secrecy closure rules and are listed in Fig. 2. In Fig.
2, A∗ is assumed to have been computed previously; E is initialized to S, and
expanded by using R-secrecy closure rules.

uS
1 -rule: if C1 u · · · u Ck(a) ∈ A∗ \ E and {C1(a), ..., Ck(a)} ∩ E 6= ∅,

then E := E ∪ {C1 u · · · u Ck(a)};
uS

2 -rule: if C1 u · · · u Ck(a) ∈ E and {C1(a), ..., Ck(a)} ∩ E = ∅,
then E := E ∪ {Ci(a)} where 1 ≤ i ≤ k;

∃S1 -rule: if ∃r.C(a) ∈ E and {r(a, b), C(b)} ⊆ A∗ \ E with b ∈ O∗,
then E := E ∪ {r(a, b)} or E := E ∪ {C(b)};

∃S2 -rule: if ∃r.C(a) ∈ A∗ \ E, and for every b ∈ O∗ with {r(a, b), C(b)} ⊆ A∗,
we have {r(a, b), C(b)} ∩ E 6= ∅, then E := E ∪ {∃r.C(a)};

vS -rule: if D(a) ∈ E, C v D ∈ T and C(a) ∈ A∗ \ E, then E := E ∪ {C(a)}.

Fig. 2. R-secrecy closure rules obtained by inverting rules in Fig. 1.

6

We denote by ΛR
S the tableau algorithm which nondeterministically applies

the R-secrecy closure rules until no further rules are applicable. When no R-
secrecy closure rule is applicable, we say that E is R-closed. It is easy to see that
ΛR
S terminates in polynomial time in the size of its input. The following lemma

and corollary show that ΛR
S results an envelope. The proofs are available in [7].

Lemma 1. Let Σ = 〈A, T 〉 be a KB, S ⊆ E ⊆ A∗ where S is the secrecy set and
E is R-closed. Then (a) A∗ \E is assertionally closed w.r.t. assertion expansion
rules listed in Fig. 1, (b) E is a secrecy envelope of S.

It turns out that the ΛR
S algorithm, although certainly producing an envelope,

may actually result an envelope that is unnecessarily large. Specifically, even if
∃A2 -rule is applicable to (A∗ \ ES)+, due to OWA, the querying agent can only
conclude that there exists an individual d that is the witness for ∃r.C(a) and that
d /∈ OΣ . However, by HNA, the querying agent has no computational access to
individual names in O∗\OΣ . This provides a cue that when computing a secrecy
envelope, the ∃S2-rule, which inverts the ∃A2 -rule, is dispensable. The new set of
secrecy closure rules, called Q-Secrecy Closure Rules, includes only the uS1-rule,
the uS2-rule, the vS-rule and the ∃S1-rule is replaced by an “optimized” version
the ∃S-rule.

∃S -rule: if ∃r.C(a) ∈ E and {r(a, b), C(b)} ⊆ A∗ \ E with b ∈ OΣ ,
then E := E ∪ {r(a, b)} or E := E ∪ {C(b)}

We denote by ΛQS the tableau algorithm which nondeterministically and ex-
haustively applies the Q-secrecy closure rules. The resulting E is said to be
Q-closed. It is clear that all executions of ΛQS terminate in polynomial time.
Theorem 1 shows that ΛQS also results an envelope. Proofs can be found in [7].

Theorem 1. Let Σ = 〈A, T 〉 be a KB, S ⊆ E ⊆ A∗ where S is the secrecy set
and E is Q-closed. Then E is a secrecy envelope of S.

Note that the whole initialization of the secrecy maintenance system (includ-
ing computation of SubC, A∗ and ES) is easily seen to be doable in polynomial
time in the size of the KB Σ plus the size of the given secrecy set S.

3.2 Query Answering

In this section we assume that the three sets SubC, A∗ and ES (the latter two,
restricted to SubC) have been precomputed in the pre-query stage as described
in Sect. 3.1. The computation of the answer to a query of the form C(a) is given
in Fig. 3. The input of the secrecy-preserving query answering procedure SPQA
contains the TBox T in normal form, precomputed assertional closure A∗, the
query C(a) and the precomputed secrecy envelope ES. Since sub-expressions of
C, denoted by sub(C), need not be in SubC, Line 2 in the SPQA procedure
expands SubC by adding expressions in sub(C) \SubC. The expanded SubC will
be used to update A∗ by applying assertion expansion rules (Fig. 1) until none
of them is applicable, as indicated in Line 2. As a consequence, there may be

7

applicable Q-secrecy closure rules, implying that ES may no longer be a secrecy
envelope for S. Therefore, we apply necessary secrecy closure rules exhaustively
(Line 3). Clearly, a single invocation of the procedure SPQA takes polynomial
time (in the sum of the sizes of its arguments).

SPQA(T ,A∗, C(a),ES):
1. if (C /∈ SubC) {
2. compute sub(C); SubC = SubC ∪ sub(C); expand A∗ to SubC;
3. expand the secrecy envelope ES to SubC; }
4. if (C(a) ∈ A∗ and C(a) /∈ ES) return “Yes”;
5. else return “Unknown”;

Fig. 3. Secrecy-preserving Query-answering Procedure

For queries of the form r(a, b), the procedure is much simpler: if r(a, b) ∈
A \ ES, then the answer is “Yes”; otherwise, the answer is “Unknown”. Here ES
is the current secrecy envelope.

Example 2. (Example 1, continued) Recall that we have a KB Σ1 = 〈A1, T1〉
and the secrecy set S1 = {CancerRisk(Jane)}. The assertional closure of Σ1,
denoted by A∗1, and one possible envelope ES1 are listed below:
A∗1 = A1 ∪ { A(Jill), ∃is child.A(Jane), CancerRisk(Jane), has pres(Jane, a),

∃has pres.CancerDrug(Jane), CancerDrug(a), CoveredDrug(a),
∃has pres.CoveredDrug(Jane), Reimburse(Jane)}.

ES1 = {CancerRisk(Jane), is child(Jane, Jill), HasMutBRCA1(Jane),
∃is child.A(Jane), ∃has pres.CancerDrug(Jane)}.

If the querying agent asks the query Reimburse(Jane), Reimburse(Jane)∈
A∗1 \ES1, the answer to the query is “Yes”. If the querying agent asks the query
CancerRisk(Jane), since CancerRisk(Jane)∈ A∗1 ∩ ES1, the answer to the query
is “Unknown”. �

4 Summary and Discussion

Summary: In this paper, we have introduced a logic-based framework for se-
crecy preserving query answering in EL knowledge bases. We have provided a
polynomial time algorithm that, given an EL KB Σ, a set S of secrets to be pro-
tected and a query q, truthfully answers the query whenever: (i) Σ � q and (ii)
the answer to q, together with the answers to any previous queries answered by
the KB does not allow the querying agent to deduce any of the secrets in S. Our
approach exploits the open world semantics under which it is impossible for the
querying agent to distinguish between an answer “Unknown” resulting because
of incomplete knowledge of the KB or because of selective censoring of answers
by the KB. Our secrecy-preserving reasoning framework builds on, and substan-
tially extends, the privacy-preserving reasoning framework introduced by Bao

8

et al. [1] which considered protecting class-subclass relationships in hierarchical
ontologies.
Related Work: Most of the work in this area falls into four broad categories
of access control mechanisms, information confinement, preventing disclosure of
information of specific individuals and controlled query evaluation. In contrast,
our approach permits the use of secrets in answering queries for a given KB
when it is possible to do so without compromising secrets under the OWA. A
detailed comparison can be found in [7].
Future Work: Some natural directions for future work include: (i) design of
an efficient algorithm for computing a “tight” envelope for EL KBs, i.e., an
envelope from which no statement can be dropped without risking the possibility
of secrets being compromised (such an algorithm is of interest in light of the fact
that our current algorithm is not guaranteed to produce a tight envelope and
the fact that computing the minimum envelope is NP-hard); (ii) exploration
of secrecy-preserving query answering algorithms in the case of more expressive
e.g., ALC, DL-Lite, and RDF KBs; (iii) investigation of secrecy-preserving query
answering in settings with multiple querying agents, under various restrictions
on communication among agents.

References

1. Jie Bao, Giora Slutzki, and Vasant Honavar. Privacy-preserving reasoning on the
semantic web. In Web Intelligence, pages 791–797. IEEE Computer Society, 2007.

2. Franz Baader. Terminological cycles in a description logic with existential restric-
tions. In IJCAI’03: Proceedings of the 18th international joint conference on Artifi-
cial intelligence, pages 325–330, San Francisco, CA, USA, 2003. Morgan Kaufmann
Publishers Inc.

3. Sebastian Brandt. Polynomial time reasoning in a description logic with existential
restrictions, gci axioms, and - what else? In Ramon López de Mántaras and Lorenza
Saitta, editors, ECAI, pages 298–302. IOS Press, 2004.

4. Adila Krisnadhi and Carsten Lutz. Data complexity in the el family of dls. In
Diego Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo, Boris Motik,
Anni-Yasmin Turhan, and Sergio Tessaris, editors, Description Logics, volume 250
of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

5. K. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Assoc., 2000.

6. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI97),
Stanford, CA, pages 321–325, 1997.

7. Jia Tao, Giora Slutzki, and Vasant Honavar. Secrecy-preserving query answering in
el. Technical Report TR10-03a, Iowa State University, Ames, IA, 2010.

8. Csilla Farkas, Alexander Brodsky, and Sushil Jajodia. Unauthorized inferences in
semistructured databases. Information Sciences, 176:3269–3299, 2006.

9

