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Abstract

The article proposes a logical framework for reasoning about agents’ ability to
protect their privacy by hiding certain information from a privacy intruder. It
is assumed that the knowledge of the intruder is derived from the observation
of pieces of evidence and that there is a cost associated with the elimination
of the evidence. The logical framework contains a modal operator labeled
by a group of agents and a total budget available to this group. The key
contribution of this work is the proposed incorporation of the cost factor
into privacy protection reasoning within the standard modal logic framework.
The main technical result are the soundness and completeness theorems for
the introduced logical system with respect to a formally defined semantics.

1. Introduction

Privacy and Costs. The cost associated with maintaining privacy is a topic
of public [11, 5] and scholarly [12, 17, 14, 18] discussions. There are at least
two aspects in our daily life where costs are explicitly or implicitly associated
with people’s privacy.

On one hand, catering to the increasing desire to protect afore-disclosed
personal information, several companies1 offer services of removing refer-
ences to such information from public sites, search engines, and commercial
databases for a fee. Some of them2 offer an additional service of disseminat-
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ing positive information about a person on the Internet so that the negative
information is harder to find. Similarly, before mobile phones became popu-
lar, close to one third of American households paid monthly fee to have their
number unlisted [1]. Nowadays, the unlisted phone service is still being of-
fered by the phone companies and for significantly higher monthly fees than
before [6].

On the other hand, consumers often reveal their private information un-
intentionally to companies in exchange for a small discount by using mail-in
rebates, coupons, or store discount cards. Such information may later be
analyzed for marketing purposes. For example, the second-largest US dis-
count retailer Target developed an approach to identify pregnant women by
tracking their shopping patterns of seemingly not-baby-related items such as
scent-free soap and extra-big bags of cotton balls [2]. In these cases, con-
sumers usually have an option not to use the promotional discount, and thus
to pay a bit more, but to avoid the disclosure of their private information.
In practice, this option of preserving privacy for an additional cost is rarely
used by consumers, possibly due to the lack of awareness.

The price that people have to pay for protecting their privacy may differ
from one individual to another. For example, European “right to be for-
gotten” law [9] makes it essentially free for individuals to remove certain
information from online search engines. At the same time, the removal of
similar information in the United States might be impossible or achievable
only by paying significant legal fees.

Modal Language. In this article we introduce a logical system for reasoning
about costs of protecting privacy by hiding some knowledge from a given
privacy intruder. We assume that the information is being hidden from
a single fixed privacy intruder that often will be referred to as just “the
intruder”. In the conclusion we talk about possible extensions of our logical
systems to handle multiple privacy intruders.

To specify such a logical system, one could consider modality Hc
aφ with

meaning “at cost c agent a can hide φ from the intruder”. Such a modality,
however, does not satisfy the standard Necessitation rule from modal logic:

φ

Hc
aφ

for any value of c. To observe this, assume that formula φ is a propositional
tautology. For example, let φ be of the form ψ ∨ ¬ψ. Being a propositional
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tautology formula ψ ∨ ¬ψ is universally true. At the same time, for each
non-negative value c, formula Hc

a(ψ ∨ ¬ψ) is not true because no matter
what actions with total cost c are taken by agent a to hide ψ ∨ ¬ψ from the
privacy intruder, it is still known to the intruder by the virtue of being a
propositional tautology.

To solve this issue, in this article we use modality 2c
aφ that stands for

“at cost c agent a cannot hide φ from the intruder”, which is the negation
of the “hiding” modality: 2c

aφ ≡ ¬Hc
aφ. This modality does satisfy the

Necessitation axiom
φ

2c
aφ

because if φ is universally true, then, as we have just discussed above, its
knowledge cannot be hidden by the agent a from anyone at any cost.

As usual in modal logic, one can also define dual modality 3c
aφ as ¬2c

a¬φ.
Under our semantics statement 3c

aφ is interpreted as “at cost c agent a can
leave the intruder under an impression that φ could be true”. Note that

Hc
aφ ≡ ¬2c

aφ ≡ 3c
a¬φ. (1)

In other words, hiding φ means creating an impression that ¬φ could be
true. The formal semantics of these modalities will be given in Definition 6.

Second Order Privacy. Statement Hc
aφ says that agent a can hide informa-

tion φ from the intruder at cost c. Some agents, especially corporate entities,
treat their business costs as a tightly guarded secret. Such agents might be
interested not only in hiding φ, but also in hiding how much it costs to them
to hide φ. The “second order” hiding (the hiding of the costs of hiding) also
has a cost associated with it. Generally speaking, the latter cost is unrelated
to the former one. The fact that at cost d the agent a can hide that at costs c
she can hide φ could be expressed in our language through nested modalities
as Hd

aH
c
aφ.

Suppose that an agent a hires a privacy protection company (agent b)
to hide information φ at cost c. The privacy protection company might be
interested to keep secret the price it charges agent a. Doing so might be an
additional business expense d for the privacy company. Thus, Hd

bH
c
aφ.

Note that nested modality Hd
bH

c
aφ does not represent a joint effort by the

two agents to hide information φ. Instead, the two nested modalities refer to
hiding two different facts by the agents. We next extend our modal language
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to capture the “joint effort”.

Agents Cooperation. If A is any finite set of agents, then by Hc
Aφ we denote

that the agents in set A, working together, can hide information φ from the
intruder at a total cost c. For the reason discussed earlier, we have chosen
modality 2c

Aφ ≡ ¬Hc
Aφ to be the primitive construction in our language.

Statement 2c
Aφ means that agents in set A, working together, cannot hide

information φ from the intruder at a total cost c. The single-agent notation2c
aφ that was used before can now be formally interpreted as 2c

{a}φ.

Principles of Privacy Protection. The main result of this article is a sound
and complete logical system that describes properties of the cost of protect-
ing privacy by a group of agents through hiding some information from the
intruder. Even though our logical system essentially consists of the axioms
of epistemic logic S5 for distributed knowledge [4] with an addition of cost
superscript, the meaning of our axioms is quite different from the meaning
of S5 axioms.

Our version of the Truth axiom:

2c
Aφ→ φ

states that if a group of agents A cannot hide fact φ from the intruder for
some cost c, then statement φ is true. The same principle can be rephrased
in terms of modality H as formula ¬φ→ Hc

aφ. Recall that hiding of φ means
creating an impression that ¬φ could be true. Since formula ¬φ is actually
true by the assumption of our rephrased principle, creating the impression
that ¬φ might be true does not take agent a any effort and does not cost her
anything. Thus, Hc

aφ. We will make this argument more formal when we
prove the soundness of the Truth axiom with respect to a formally defined
semantics in Lemma 3.

The Positive Introspection axiom

2c+d
B φ→ 2c

A2d
Bφ,

where A ⊆ B, states that if a larger group B cannot hide φ at cost c + d,
then any subgroup A ⊆ B cannot hide from the intruder, at cost c, the fact
that group B cannot hide φ at cost d. This principle can be rephrased in
the terms of the hiding modality as Hc

A¬Hd
Bφ → Hc+d

B φ. To understand
why this principle is valid, recall that hiding φ means creating an impression

4



that ¬φ could be true. Thus, per the assumption of our rephrased principle,
agents in set A at cost c can create an impression that Hd

Bφ could be true.
In other words, agents in set A at cost c can create an impression that agents
in set B at cost d can create an impression that φ is false. Working together,
agents in sets A and B at combined cost c+ d can create an impression that
φ is false. That is, Hc+d

A∪Bφ. Therefore, H
c+d
B φ due to the assumption A ⊆ B.

We will make this argument more formal when we prove the soundness of the
Positive Introspection axiom with respect to a formally defined semantics in
Lemma 4.

The Negative Introspection axiom is true in our setting in the following
form:

¬2c
Bφ→ 2d

A¬2c+d
B φ,

where A ⊆ B. The axiom states that if a larger group B can hide φ at cost
c, then any subgroup A ⊆ B cannot hide from the intruder, at cost d, the
fact that group B can hide φ at cost c + d. The axiom could be rephrased
in terms of hiding modality as

Hd
AH

c+d
B φ→ ¬Hc

Bφ.

The claim of this axiom is perhaps counterintuitive and cannot be easily
justified without giving formal semantics of information hiding. We prove
the soundness of this axiom with respect to the formally defined semantics
in Lemma 5.

Finally, the Distributivity axiom,

2c
A(φ→ ψ) → (2c

Aφ→ 2c
Aψ),

states that if a group of agents A can hide neither φ → ψ nor φ from
the intruder at cost c, then it cannot hide ψ at the same cost c. Informally,
validity of this principle is self-evident. We prove the soundness of this axiom
with respect to the formally defined semantics in Lemma 6.

Related Literature. The hiding of knowledge from the intruder is closely re-
lated to forgetting the knowledge. Different ways of forgetting from the epis-
temic point of view have been discussed by van Ditmarsch et al. [16]. They
proposed a sound and complete logical system of propositional variable for-
getting. Although their logical system has a more sophisticated semantics
of forgetting than our semantics of evidence elimination, their system does
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not take into account the cost. Zhang and Zhou [19] proposed an alternative
semantics of forgetting and gave four semantic postulates completely char-
acterizing their notion of forgetting. However, due to the semantical nature
of these postulates, they do not form a logical system. Zhang and Zhou’s
approach also does not consider the cost associated with forgetting.

There are very few papers that combine the cost of actions and logic.
Endriss et al. [3] investigated taxation schemes in Boolean games. In our
work on budget constrained knowledge [7], we interpreted modality 2c

aφ as
“at cost c agent a can learn that fact φ is true”. In spite of the seman-
tic similarity between the budget constrained knowledge and the knowledge
hiding, these two modalities have very different properties: the budget con-
strained modality does not satisfy the Negative Introspection axiom and it
has a different form of Distributivity axiom: 2c

a(φ→ ψ) → (2d
aφ→ 2c+d

a ψ).
This article is also related to our article on the logic of confidence [8],

where we interpreted modality 2c
aφ as “agent a knows that statement φ is

true assuming that she makes measurements with precision ±c”. Unlike the
current article that considers modalities labeled by sets of agents, logic of
confidence only considers modalities labeled by single agents. However, if
one restricts the logical system in the current article to single agent labels,
then the resulting logical system, although with a totally different semantics,
would become very similar to the logic of confidence. The only difference
would be that the logic of confidence contains “Zero Confidence” axiom:
φ → 20

aφ which is not sound under the “knowledge hiding” semantics of
the current article. This is because of our assumption that some pieces of
evidence might be eliminated at zero cost. We have taken this approach for
the sake of generality.

The article is organized as follows. In the next section we introduce the
syntax and formal semantics of our logical system. Than we list axioms of
this system. In the two sections that follow, we prove the soundness and the
completeness of our logical systems, respectively. The last section concludes.

2. Syntax and Semantics

Throughout the article we assume a fixed set of atomic propositions P
and a fixed set of agent variables A. We start by defining the language Φ of
our formal system.

Definition 1. Let set Φ be the minimal set of formulas such that
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1. p ∈ Φ for each atomic proposition p ∈ P,

2. φ→ ψ ∈ Φ for each φ, ψ ∈ Φ,

3. ¬φ ∈ Φ for each φ ∈ Φ,

4. 2c
Aφ ∈ Φ for each non-negative real number c, each nonempty finite

subset A ⊆ A, and each φ ∈ Φ.

Note that we only allow non-negative real values of c in the modality 2c
A.

We next introduce a formal semantics in which groups of agents can hide
some information from a privacy intruder. We assume that the intruder de-
rives its knowledge by observing certain pieces of evidence. For example, a
discount store can conclude that a woman is pregnant by observing that she
buys either scent-free soap or an extra-big bag of cotton balls3. From an
epistemic logic point of view, each piece of evidence can be treated as an in-
distinguishability relation between epistemic worlds. That is, the presence of
scent-free soap in a woman’s shopping record can be used to distinguish epis-
temic worlds where the shopping record contains this item from the worlds
where it does not contain the item.

For example, consider two epistemic worlds w and u such that Mary buys
scent-free soap in both worlds, Jane buys scent-free soap in neither of these
worlds, and Kathy buys scent-free soap in world w, but not in world u. In
this setting,

w ∼“Mary buys scent-free soap.” u,

w ∼“Jane buys scent-free soap.” u,

w ≁“Kathy buys scent-free soap.” u.

Representing pieces of evidence as equivalence relations on epistemic
worlds was introduced in our work on budget-constrained knowledge [7]. It
is, however, not the only way to define formal semantics of evidence. Van
Benthem and Pacuit use neighborhood models [15]. Neighborhood models
of evidence are geared towards treating beliefs. For example, they assume
that evidence does not necessarily support the current world. Such semantics
would not fit into the scope of our paper since we use word “evidence” as a
synonym for justifications of true facts.

3This is a significantly simplified version of the model used by Target to predict preg-
nancy [2].
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Following the assumption that the intruder derives its knowledge by ob-
serving certain pieces of evidence, we formally interpret the hiding of knowl-
edge as the elimination of these pieces of evidence. We further assume that
there is a cost of elimination of an evidence to each agent. For example, if
scent-free soap is 20 cents off when using a store discount card, a woman can
hide her pregnancy by not using the card and, thus, paying 20 cents more
but eliminating the evidence of her pregnancy. Generally speaking, not every
agent is able to eliminate every evidence. If an agent cannot erase a piece
of evidence, then we say that the cost of eliminating this piece to the agent
is infinity. Thus, our semantics allows infinite cost of evidence elimination
although our syntax only allows non-negative real values of c in the modality2c

A.

Definition 2. A tuple ⟨W , E , {∼e}e∈E , {∥·∥a}a∈A, π⟩ is called a Kripke model
if

1. W is an arbitrary set (of epistemic worlds),

2. E is an arbitrary set (of evidences),

3. ∼e is an (indistinguishability) equivalence relation on the set W asso-
ciated with the piece of evidence e ∈ E ,

4. ∥ · ∥a is a (cost) function from set E into set {r ∈ R | r ≥ 0} ∪ {+∞},
for each agent a ∈ A,

5. π is a function from atomic propositions into subsets of W.

As another example, consider a scenario where Mary and Jane, both
pregnant, are standing in a cashier line. Mary has scent-free soap in her
shopping cart and Jane has an extra-big bag of cotton balls. The soap is
20 cents off and cotton balls are 30 cents off when a store discount card is
presented. In this setting, each woman can eliminate the evidence of her own
pregnancy by not using the discount card. However, she cannot eliminate
the evidence of the other woman’s pregnancy:

∥“Mary buys scent-free soap.”∥Mary = 0.20,

∥“Mary buys scent-free soap.”∥Jane = +∞,

∥“Jane buys a big bag of cotton balls.”∥Jane = 0.30,

∥“Jane buys a big bag of cotton balls.”∥Mary = +∞.

Definition 3. ∥e∥A = mina∈A ∥e∥a, for every e ∈ E and every A ⊆ A.
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For example, in the situation described above,

∥“Mary buys scent-free soap.”∥{Mary,Jane} = 0.20,

∥“Jane buys a big bag of cotton balls.”∥{Mary,Jane} = 0.30.

Definition 4. ∥E∥A =
∑

e∈E ∥e∥A, for every E ⊆ E and every A ⊆ A.

For instance,

∥{“Jane buys a big bag of cotton balls.”,

“Mary buys scent-free soap.”}∥{Mary,Jane} = 0.50.

Next, we prove two technical lemmas that are used later to show the sound-
ness of our logical system.

Lemma 1. ∥E1∪E2∥A ≤ ∥E1∥A+∥E2∥A, for every finite subsets E1, E2 ⊆ E
and every finite subset A ⊆ A.

Proof.

∥E1 ∪ E2∥A =
∑

e∈E1∪E2

∥e∥A ≤
∑
e∈E1

∥e∥A +
∑
e∈E2

∥e∥A = ∥E1∥A + ∥E2∥A.

⊠

Lemma 2. ∥E∥B ≤ ∥E∥A, for every finite subset E ⊆ E and every two
finite subsets A and B of A such that A ⊆ B.

Proof.

∥E∥B =
∑
e∈E

∥e∥B =
∑
e∈E

min
x∈B

∥e∥x ≤
∑
e∈E

min
x∈A

∥e∥x =
∑
e∈E

∥e∥A = ∥E∥A.

⊠

For any set of pieces of evidence E, we write w ∼E u if epistemic worlds w
and u cannot be distinguished based on the pieces of evidence in set E. For
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example, if epistemic worlds w and u differ only by a third woman, Kathy,
being pregnant in w and not pregnant in u, then these two epistemic worlds
cannot be distinguished by the discount store based on the items in Mary’s
and Jane’s shopping carts: w ∼{e1,e2} u, where

e1 = “Mary buys scent-free soap.”, and

e2 = “Jane buys a big bag of cotton balls.”

Formally, this relation is defined as follows:

Definition 5. For any worlds w, u ∈ W and any subset E ⊆ E, let w ∼E u
mean that w ∼e u for each e ∈ E.

Corollary 1. Relation ∼E is an equivalence relation on set W for each sub-
set E ⊆ E. 2

Recall from the Introduction that the intended meaning of w ⊩ 2c
Aφ is

“group of agents A constrained by a total budget c cannot hide φ from the
intruder”. In this article, we formally capture hiding information as removing
evidence. Thus, under our formal semantics, w ⊩ 2c

Aφ means that “group
of agents A constrained by a total budget c cannot remove enough pieces of
evidence to hide φ from the intruder”.

For example, if w is the epistemic world in which Mary is pregnant and
is buying both scent-free soap (20 cents off with her shopping card) and an
extra-big bag of cotton balls (30 cents off), then paying only extra 40 cents
is not sufficient for her to hide her pregnancy from the store:

w ⊩ 20.40
{Mary}“Mary is pregnant.”

However, she can hide her pregnancy by not using her shopping card and,
thus, paying extra 50 cents:

w ⊩ ¬20.50
{Mary}“Mary is pregnant.”

If u is an epistemic world in which pregnant Mary is buying scent-free soap
and Jane, also pregnant, is buying an extra-big bag of cotton balls, then when
constrained by 40-cent budget they cannot hide the fact that at least one of
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them is pregnant, but they can hide the fact that they are both pregnant if
one of them does not use her discount card:

u ⊩ 20.40
{Mary,Jane}“One of Mary and Jane is pregnant.”

u ⊩ ¬20.40
{Mary,Jane}“Mary and Jane are both pregnant.”

The first of the above claims is true because no matter which evidence with
a cost up to 40 cents (or a set of evidences with a total cost up to 40 cents)
is removed, it still can be inferred that at least one of them is pregnant. In
other words, after the removal of any set of pieces of evidence with total cost
up to 40 cents, at least one of these two women is pregnant in each epistemic
world indistinguishable to the store from world u. This is formally captured
in item 4 of the definition below.

Definition 6. For any formula φ ∈ Φ and any world w ∈ W of a Kripke
model ⟨W , E , {∼e}e∈E , {∥ · ∥a}a∈A, π⟩, let the satisfiability relation w ⊩ φ be
defined as follows:

1. w ⊩ p if w ∈ π(p),
2. w ⊩ ¬ψ if w ⊮ ψ,
3. w ⊩ ψ → χ if w ⊮ ψ or w ⊩ χ,
4. w ⊩ 2c

Aψ if u ⊩ ψ, for each finite E ⊆ E such that ∥E∥A ≤ c and each
u ∈ W such that w ∼E\E u.

3. Axioms

Our logical system, in addition to the propositional tautologies in lan-
guage Φ, contains the following axioms for each sets A and B such that
A ⊆ B:

1. Truth: 2c
Aφ→ φ,

2. Positive Introspection: 2c+d
B φ→ 2c

A2d
Bφ,

3. Negative Introspection: ¬2c
Bφ→ 2d

A¬2c+d
B φ,

4. Distributivity: 2c
A(φ→ ψ) → (2c

Aφ→ 2c
Aψ).

We write ⊢ φ if formula φ is provable from the propositional tautologies and
the above axioms using Modus Ponens and Necessitation inference rules:

φ, φ→ ψ

ψ

φ

2c
Aφ

.
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We write X ⊢ φ if formula φ is provable from propositional tautologies, the
above axioms, and the additional set of axioms X using only Modus Ponens
inference rule.

Next, we give two examples of proofs in our logical system.

Proposition 1. ⊢ 2c
Aφ → 2d

Aφ, for each c ≥ d ≥ 0, each subset A ⊆ A,
and each φ ∈ Φ.

Proof. By the Positive Introspection axiom, ⊢ 2c
Aφ → 2c−d

A 2d
Aφ. By the

Truth axiom, ⊢ 2c−d
A 2d

Aφ → 2d
Aφ. Then, from the two statements above

using propositional logic we can conclude that ⊢ 2c
Aφ→ 2d

Aφ. ⊠

Proposition 2. ⊢ 2c
Bφ → 2c

Aφ, for each c ≥ 0, each φ ∈ Φ, and each pair
of subsets A and B of A such that A ⊆ B.

Proof. By the Truth axiom, ⊢ 20
Bφ → φ. Hence, by the Necessitation rule,

⊢ 2c
A(20

Bφ→ φ). Thus, by the Distributivity axiom and the Modus Ponens
inference rule,

⊢ 2c
A20

Bφ→ 2c
Aφ. (2)

At the same time, by the Positive Introspection axiom, ⊢ 2c
Bφ → 2c

A20
Bφ.

Therefore, ⊢ 2c
Bφ→ 2c

Aφ using statement (2) and propositional logic. ⊠

4. Soundness

In this section we establish the soundness of our logical system with re-
spect to the semantics given in Definition 6. The soundness of propositional
tautologies and of Modus Ponens inference rule is straightforward. Below we
prove the soundness of each of the remaining axioms and of Necessitation
inference rule as separate lemmas. We assume that (i) w is an arbitrary epis-
temic world of a Kripke model ⟨W , E , {∼e}e∈E , {∥ · ∥a}a∈A, π⟩, (ii) φ, ψ ∈ Φ,
(iii) A,B ⊆ A, and (iv) c, d ≥ 0.

Lemma 3 (Truth). If w ⊩ 2c
Aφ, then w ⊩ φ.

Proof. By Definition 6, assumption w ⊩ 2c
Aφ implies that u ⊩ φ for each

finite E ⊆ E such that ∥E∥A ≤ c and each u ∈ W such that w ∼E\E u.
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Consider E = ∅. By Corollary 1, relation ∼E\∅ is an equivalence relation on
set W . Thus, w ∼E\∅ w. Also note that

∥E∥A =
∑
e∈∅

∥e∥A = 0 ≤ c.

Therefore, w ⊩ φ. ⊠

Lemma 4 (Positive Introspection). If w ⊩ 2c+d
B φ and A ⊆ B, then w ⊩2c

A2d
Bφ.

Proof. Consider any E1 ⊆ E such that ∥E1∥A ≤ c and any u ∈ W such that
w ∼E\E1 u. It suffices to show that u ⊩ 2d

Bφ. To prove this, consider any
E2 ⊆ E such that ∥E2∥B ≤ d and any v ∈ W such that u ∼E\E2 v. We need
to show that v ⊩ φ.

First, note that w∼E\E1 u implies w ∼E\(E1∪E2) u. Similarly, u ∼E\E2 v
implies u ∼E\(E1∪E2) v. By Corollary 1, relation ∼E\(E1∪E2) is transitive.
Thus, w ∼E\(E1∪E2) v.

Second, by Lemma 1 and Lemma 2,

∥E1 ∪ E2∥B ≤ ∥E1∥B + ∥E2∥B ≤ ∥E1∥A + ∥E2∥B ≤ c+ d.

By Definition 6, assumption w ⊩ 2c+d
B φ implies that w′ ⊩ φ for each

E ⊆ E such that ∥E∥B ≤ c + d and each w′ ∈ W such that w ∼E\E w′.
Consider, in particular, E ′ = E1 ∪ E2 and w′ = v. Then, v ⊩ φ. ⊠

Lemma 5 (Negative Introspection). If w ⊮ 2c
Bφ and A ⊆ B, then w ⊩2d

A¬2c+d
B φ.

Proof. By Definition 6, assumption w ⊮ 2c
Bφ implies that there is E1 ⊆ E

such that ∥E1∥B ≤ c and there is u ∈ W such that w ∼E\E1 u and u ⊮ φ.
Consider any E2 ⊆ E such that ∥E2∥A ≤ d and any v ∈ W such that

w ∼E\E2 v. By Definition 6, it suffices to prove that v ⊮ 2c+d
B φ. Note

w ∼E\E1 u implies that w ∼E\(E1∪E2) u. Similarly, w ∼E\E2 v implies that
w ∼E\(E1∪E2) v. Hence, v ∼E\(E1∪E2) u by Corollary 1. At the same time,
u ⊮ φ and, by Lemma 1 and Lemma 2,

∥E1 ∪ E2∥B ≤ ∥E1∥B + ∥E2∥B ≤ ∥E1∥B + ∥E2∥A ≤ c+ d.
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Therefore, v ⊮ 2c+d
B φ by Definition 6. ⊠

Lemma 6 (Distributivity). If w ⊩ 2c
A(φ → ψ) and w ⊩ 2c

Aφ, then w ⊩2c
Aψ.

Proof. Consider any finite E ⊆ E such that ∥E∥A ≤ c and any u ∈ W such
that w ∼E\E u. By Definition 6, it suffices to prove that u ⊩ ψ. Indeed,
assumptions w ⊩ 2c

Aφ and w ⊩ 2c
A(φ → ψ), by Definition 6, imply that

u ⊩ φ and u ⊩ φ→ ψ. Therefore, again by Definition 6, u ⊩ ψ. ⊠

Lemma 7 (Necessitation). If w′ ⊩ φ for each epistemic world w′ of each
Kripke model, then w ⊩ 2c

Aψ.

Proof. Consider any E ⊆ E such that ∥E∥A ≤ c and any u ∈ W such that
w ∼E\E u. By Definition 6, it suffices to show that u ⊩ φ, which is true due
to the assumption of the lemma. ⊠

5. Completeness

In the rest of this article, we prove the completeness theorem for our log-
ical system that is stated later as Theorem 1. The proof of the completeness
is based on the “unravelling” technique [13].

For an arbitrary maximal consistent subset s0 of set Φ, we define a Kripke
model

K(s0) = ⟨W , E , {∼e}e∈E , {∥ · ∥}a∈A, π⟩

that will be referred to as the canonical model.
We start with a formal definition of set W , followed by an informal dis-

cussion of the intuition behind this definition.

Definition 7. Let the set of epistemic worlds W be the set of all sequences

⟨s0, (A1, d1), s1, (A2, d2), s2, . . . , (An, dn), sn⟩

such that 0 ≤ n and for each 0 < i ≤ n,

1. si is a maximal consistent subset of Φ,
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2. the finite nonempty subset of agents Ai ⊆ A and the real number di ≥ 0
are such that the following two conditions are satisfied for each c ≥ 0,
each B ⊇ Ai, and each φ ∈ Φ:

(a) if 2c+di
B φ ∈ si−1, then 2c

Bφ ∈ si,
(b) if 2c+di

B φ ∈ si, then 2c
Bφ ∈ si−1.

. . .

< s0 >

w= < s0, ... , si-1>

u= < s0, ... , si-1, (Ai,di), si>

. . .. . .

. . .

Figure 1: Canonical Tree.

Intuitively, the set of epistemic worlds W can be viewed as a tree, see
Figure 1, which we call the canonical tree, where world

w = ⟨s0, (A1, d1), s1, . . . , (Ai−1, di−1), si−1⟩

is a parent node of world

u = ⟨s0, (A1, d1), s1, . . . , (Ai−1, di−1), si−1, (Ai, di), si⟩

and world ⟨s0⟩ is the root of the tree. In Definition 9 below, we define the
set of pieces of evidence E for this model in a way that there is a set of pieces
of evidences Ew,u ⊆ E such that ∥Ew,u∥Ai

= di and w ∼E\Ew,u u. In other
words, epistemic worlds w and u are not distinguishable if the set of pieces
of evidence Ew,u is eliminated.

To understand the reason behind condition (a) of item 2 in Definition 7,
consider statement 2c+di

B φ ∈ si−1 in the canonical model. We would like it
to mean that statement w ⊩ 2c+di

B φ is true. Hence, by Definition 6, for each
E ⊆ E such that ∥E∥B ≤ c + di and each v ∈ W such that w ∼E\E v, we
have v ⊩ φ. Note that Ai ⊆ B, w ∼E\Ew,u u, and ∥Ew,u∥Ai

= di. Thus, for
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each E ′ ⊆ E such that ∥E ′∥B ≤ c and each v ∈ W such that u ∼E\E′ v we
have v ⊩ φ. Therefore, u ⊩ 2c

Bφ, which in a canonical model we would like
to mean that 2c

Bφ ∈ si. Condition (b) of item 2 is defined for the similar
reason.

The next corollary directly follows from Definition 7.

Corollary 2. For any 0 ≤ k ≤ n, any c ≥ 0, any formula φ ∈ Φ, any set
B ⊆ E, and any ⟨s0, (A1, d1), s1, (A2, d2), s2, . . . , (An, dn), sn⟩ ∈ W , such that∪n

i=k+1Ai ⊆ B,

1. if 2c+dk+1+···+dn
B φ ∈ sk, then 2c

Bφ ∈ sn,

2. if 2c+dk+1+···+dn
B φ ∈ sn, then 2c

Bφ ∈ sk.

In the next definition we introduce several technical notations that are
used throughout the proof of the completeness.

Definition 8. If w is an epistemic world

⟨s0, (A1, d1), s1, (A2, d2), s2, . . . , (An, dn), sn⟩,

then let

1. σ(w) = sn,

2. α(w) = An, if n > 0,

3. δ(w) = dn, if n > 0.

Note that α(⟨s0⟩) and δ(⟨s0⟩) are not defined.
Recall that for each pair of epistemic worlds w and u such that node w is

the parent of node u in the canonical tree, we intend to have a set of pieces
of evidence Ew,u such that ∥Ew,u∥α(u) = δ(u) and w ∼E\Ew,u u. The pieces
of evidence in set Ew,u are all pairs (u, a) such that a ∈ α(u). This leads us
to the following definition of the set of all pieces of evidence in the canonical
model.

Definition 9. The evidence set E is {(u, a) | u ∈ W \ {⟨s0⟩}, a ∈ α(u)}.

We say that world w1 ∈ W is a prefix of world w2 ∈ W (denoted by w1 ⪯
w2) if for some m ≤ n, world w1 is equal to ⟨s0, (A1, d1), s1, . . . , (Am, dm), sm⟩
and world w2 is equal to ⟨s0, (A1, d1), s1, . . . , (Am, dm), sm, . . . , (An, dn), sn⟩.
If m < n, then we say that world w1 is a proper prefix of world w2 and denote
it by w1 ≺ w2. In other words, w1 ⪯ w2 means that node w1 is an ancestor
of node w2 in the canonical tree.
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Lemma 8. For any worlds u,w1, w2 ∈ W, if u ̸= w2,

w1 = ⟨s0, (A1, d1), s1, . . . , (Am−1, dm−1), sm−1⟩, and

w2 = ⟨s0, (A1, d1), s1, . . . , sm−1, (Am, dm), sm⟩,

then u ⪯ w1 if and only if u ⪯ w2.

Proof. Any prefix of sequence w1 is also a prefix of sequence w2. The only
prefix of sequence w2 which is not a prefix of sequence w1 is sequence w2

itself. Together, these two statements imply the claim of the lemma. ⊠

We now define the indistinguishability relations for the canonical model.

Definition 10. For any worlds w1, w2 ∈ W and any piece of evidence (u, a) ∈
E, the indistinguishability relation w1 ∼(u,a) w2 holds if the following two con-
ditions are either both true or both false: (i) u ⪯ w1, (ii) u ⪯ w2.

Lemma 9. For each (u, a) ∈ E, relation ∼(u,a) is an equivalence relation on
set W.

Proof. The statement of the lemma follows from Definition 10 and the fact
that bi-conditional “either both true or both false” is an equivalence relation
in Boolean algebra. ⊠

. . .

< s0 >

w

u

. . .. . .

. . .

Figure 2: Two equivalence classes of relation ∼(u,a).
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Relation ∼(u,a) partitions epistemic worlds into two equivalence classes.
One class contains all sequences v for which u is a prefix and the other class
contains all other epistemic worlds. In other words, if w is the parent node
of u in the canonical tree, as depicted in Figure 2, then the classes are the
sets of nodes of the two connected components obtained by removing edge
(w, u) from the canonical tree.

Definition 11. For any two sequences w1, w2 ∈ W, the greatest common
prefix gcp(w1, w2) is the longest sequence u ∈ W such that u ⪯ w1 and
u ⪯ w2.

In terms of the canonical tree, gcp(w1, w2) is the most recent common
ancestor of nodes w1 and w2. The next lemma characterizes relation w1 ∼(u,a)

w2 in terms of greatest common prefixes.

Lemma 10. For any a ∈ α(v), w1 ≁(v,a) w2 if and only if gcp(w1, w2) ≺
v ⪯ w1 or gcp(w1, w2) ≺ v ⪯ w2.

Proof. (⇒) Suppose that w1 ≁(v,a) w2. Thus, by Definition 10, without loss of
generality, assume that v ⪯ w1 and v ⪯̸ w2. By Definition 11, gcp(w1, w2) ⪯
w1. So, sequences v and gcp(w1, w2) are both prefixes of w1. There are two
possible cases to consider (see Figure 3):

< s0 >

w2

v

gcp(w1,w2)

w1

Case I

< s0 >

w2

v

gcp(w1,w2)

w1

Case II

Figure 3: Towards the proof of Lemma 10.

Case I: If v ⪯ gcp(w1, w2), then, v ⪯ gcp(w1, w2) ⪯ w2, which is a contradic-
tion with our assumption that v ⪯̸ w2.
Case II: If gcp(w1, w2) ≺ v, then, gcp(w1, w2) ≺ v ⪯ w1.
(⇐) Without loss of generality, suppose that gcp(w1, w2) ≺ v ⪯ w1. Thus,
sequence v is a prefix of sequence w1, but not of sequence w2. Hence, v ⪯̸ w2.
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By Definition 10, statements v ⪯ w1 and v ⪯̸ w2 imply that w1 ≁(v,a) w2. ⊠

As we pointed out earlier, equivalence relation ∼(u,a) partitions epistemic
worlds into two equivalence classes (see Figure 2). Informally, it means that
evidence (u, a) can be used to distinguish two epistemic worlds if and only if
these worlds belong to different equivalence classes. If all pieces of evidence
in the set {(u, a) | a ∈ α(u)} are eliminated, then the intruder is no longer
able to distinguish epistemic worlds from these two equivalence classes. In
what follows, we assume that only agent a can eliminate evidence (u, a) at a
finite cost. The cost of eliminating all pieces of evidences in set {(u, a) | a ∈
α(u)} must be δ(u), but how exactly this cost is divided between all pieces
of evidence (u, a) for various a ∈ α(u) is not important. For the sake of
simplicity, we assume that the total cost δ(u) of removing pieces of evidence
in set {(u, a) | a ∈ α(u)} is evenly divided between corresponding a ∈ α(u).

Definition 12. For each (u, a) ∈ E and each b ∈ A,

∥(u, a)∥b =


δ(u)

|α(u)|
, if a = b,

+∞, otherwise,

where |α(u)| denotes the cardinality of set α(u).

Cost function ∥(u, a)∥b is well-defined because, by Definition 7, set α(u) is
nonempty, and thus, |α(u)| ̸= 0.

Lemma 11. If ∥(u, a)∥B < +∞, then a ∈ B.

Proof. The lemma follows from Definition 3 and Definition 12. ⊠

To conclude the definition of the canonical model, we next specify the
semantics of the atomic propositions.

Definition 13. For any atomic proposition p, let

π(p) = {w ∈ W | p ∈ σ(w)}.

The following three lemmas are variations of the lemmas commonly found
in the proofs of completeness for various modal logics.
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Lemma 12. For any epistemic world w ∈ W, if 2c
Aφ /∈ σ(w), then there is

E ⊆ E such that ∥E∥A = c and there is a world u ∈ W such that w ∼E\E u
and φ /∈ σ(u).

Proof. We first show that the following set is consistent

X = {¬φ} ∪ {2d
Bψ | 2d+c

B ψ ∈ σ(w), A ⊆ B} ∪ {¬2d+c
B χ | ¬2d

Bχ ∈ σ(w), A ⊆ B}.

Assume the opposite. Thus, there must exist

2d1+c
B1

ψ1, . . . ,2dn+c
Bn

ψn,¬2d′1
B′

1
χ1, . . . ,¬2d′m

B′
m
χm ∈ σ(w) (3)

such that

2d1
B1
ψ1, . . . ,2dn

Bn
ψn,¬2d′1+c

B′
1
χ1, . . . ,¬2d′m+c

B′
m

χm ⊢ φ.

Hence, by the Deduction theorem for propositional logic,

⊢ 2d1
B1
ψ1 → (. . . (2dn

Bn
ψn → (¬2d′1+c

B′
1
χ1 → (. . . (¬2d′m+c

B′
m

χm → φ) . . . ))) . . . ).

Thus, by the Necessitation rule,

⊢ 2c
A(2d1

B1
ψ1 → (. . . (2dn

Bn
ψn → (¬2d′1+c

B′
1
χ1 → (. . . (¬2d′m+c

B′
m

χm → φ) . . . ))) . . . )).

By the Distributivity axiom and the Modus Ponens rule,

2c
A2d1

B1
ψ1 ⊢ 2c

A(2d2
B2
ψ2 → (· · · → (¬2d′m+c

B′
m

χm → φ) . . . )).

By repeating the previous step (n+m− 1) times,

2c
A2d1

B1
ψ1, . . . ,2c

A2dn
Bn
ψn,2c

A¬2d′1+c

B′
1
χ1, . . . ,2c

A¬2d′m+c
B′

m
χm ⊢ 2c

Aφ.

By the Positive Introspection axiom applied n times,

2c+d1
B1

ψ1, . . . ,2c+dn
Bn

ψn,2c
A¬2d′1+c

B′
1
χ1, . . . ,2c

A¬2d′m+c
B′

m
χm ⊢ 2c

Aφ.

By the Negative Introspection axiom applied m times,

2c+d1
B1

ψ1, . . . ,2c+dn
Bn

ψn,¬2d′1
B′

1
χ1, . . . ,¬2d′m

B′
m
χm ⊢ 2c

Aφ.
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Hence, σ(w) ⊢ 2c
Aφ, due to assumption (3). Thus, due to the maximality of

σ(w), we have 2c
Aφ ∈ σ(w), which contradicts the assumption of the lemma.

Therefore, set X is consistent.
Let X̂ be a maximal consistent extension of X. Define u to be the se-

quence obtained by concatenating sequence ⟨(A, c), X̂⟩ to the end of sequence
w. By Definition 7, we have u ∈ W .

Let E = {(u, a) | a ∈ α(u)}. By Definition 4, Definition 3, Definition 12,
and Definition 8,

∥E∥A = ∥{(u, a) | a ∈ A}∥A =
∑
a∈A

∥(u, a)∥A

=
∑
a∈A

min
b∈A

∥(u, a)∥b =
∑
a∈A

δ(u)

|α(u)|
=

∑
a∈A

c

|A|
= c.

Next we prove that w ∼E\E u. It suffices to show that w ∼e u for any
e ∈ E such that e /∈ E. Consider any e = (v, b) ∈ E \ E. Note that v ̸= u
due to the choice of set E. By Lemma 8, statements v ⪯ w and v ⪯ u are
equivalent. Hence, w ∼(v,b) u by Definition 10.

Finally, note that ¬φ ∈ X due to the choice of set X. Thus, ¬φ ∈ X̂.
Hence, φ /∈ X̂ due to the consistency of set X̂. Therefore, φ /∈ σ(u) because

σ(u) = X̂ by the choice of u. ⊠

Lemma 13. For any two epistemic worlds w1, w2 ∈ W, if 2c
Bφ ∈ σ(w1),

∥E∥B ≤ c, and w1 ∼E\E w2, then φ ∈ σ(w2).

Proof. Let u = gcp(w1, w2). We start by proving three auxiliary claims.

Claim 1. For every (v, a) ∈ E, if either u ≺ v ⪯ w1 or u ≺ v ⪯ w2, then
(v, a) ∈ E.

Proof of Claim 1. Without loss of generality, it suffices to prove that
(v, a) ∈ E, for every (v, a) ∈ E such that u ≺ v ⪯ w1, see Figure 4. Indeed,
since u ≺ v ⪯ w1 and u = gcp(w1, w2), we have v ⪯̸ w2. Thus, w1 ≁(v,a) w2

by Lemma 10. Therefore, (v, a) ∈ E due to assumption w1 ∼E\E w2 of the
lemma. 2
Claim 2. For every v ∈ W and every a ∈ α(v), if either u ≺ v ⪯ w1 or
u ≺ v ⪯ w2, then a ∈ B.

21



. . .

< s0 >

w2

v

. . .

. . .

u

w1

Figure 4: Towards the proof of Claim 1.

Proof of Claim 2. By Claim 1, we have (v, a) ∈ E. Thus, ∥(v, a)∥B < +∞
due to assumption ∥E∥B ≤ c of the lemma. Therefore, a ∈ B by Lemma 11.2
Claim 3.

∑
u≺v⪯w1

δ(v) +
∑

u≺v⪯w2
δ(v) ≤ c.

Proof of Claim 3. By Definition 7, set α(v) is not empty for every v ∈ W .
Thus, ∑

u≺v⪯w1

δ(v) +
∑

u≺v⪯w2

δ(v) =
∑

u≺v⪯w1

∑
a∈α(v)

δ(v)

|α(v)|
+

∑
u≺v⪯w2

∑
a∈α(v)

δ(v)

|α(v)|
.

At the same time, by Definition 12 and Claim 2,∑
u≺v⪯w1

∑
a∈α(v)

δ(v)

|α(v)|
+

∑
u≺v⪯w2

∑
a∈α(v)

δ(v)

|α(v)|

=
∑

u≺v⪯w1

∑
a∈α(v)

∥(v, a)∥B +
∑

u≺v⪯w2

∑
a∈α(v)

∥(v, a)∥B.

By Claim 1,∑
u≺v⪯w1

∑
a∈α(v)

∥(v, a)∥B +
∑

u≺v⪯w2

∑
a∈α(v)

∥(v, a)∥B ≤
∑
e∈E

∥e∥B.
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Finally, by Definition 4 and assumption ∥E∥B ≤ c of the lemma,∑
e∈E

∥e∥B = ∥E∥B ≤ c.

Therefore, ∑
u≺v⪯w1

δ(v) +
∑

u≺v⪯w2

δ(v) ≤ c.

2
To finish the proof of the lemma, note that by Claim 2, Claim 3, and

Corollary 2, assumption 2c
Bφ ∈ σ(w1) implies

2c−
∑

u≺v⪯w1
δ(v)

B φ ∈ σ(u).

Hence, again by Claim 2, Claim 3, and Corollary 2,

2c−
∑

u≺v⪯w1
δ(v)−

∑
u≺v⪯w2

δ(v)

B φ ∈ σ(w2).

Thus, φ ∈ σ(w2) by the Truth axiom and the maximality of set σ(w2). This
concludes the proof of Lemma 13. ⊠

Lemma 14. φ ∈ σ(w) if and only if w ⊩ φ, for each w ∈ W and each
φ ∈ Φ.

Proof. We prove the statement of the lemma by induction on the structural
complexity of formula φ.

Assume that formula φ is an atomic proposition p. Then, by Definition 13,
statement p ∈ σ(w) is equivalent to statement w ∈ π(p). By Definition 6,
statement w ∈ π(p) is equivalent to w ⊩ p.

Cases when formula φ is an implication or a negation follow in the stan-
dard way from the induction hypothesis and the assumption of maximality
and consistency of set σ(w).

Suppose that φ is formula 2c
Aψ. (⇒) Let 2c

Aψ ∈ σ(w). To prove that
w ⊩ 2c

Aψ, consider any E ⊆ E such that ∥E∥A ≤ c and any u ∈ W such
that w ∼E\E u. By Definition 6, it suffices to show that u ⊩ ψ, which is true
by Lemma 13 and the induction hypothesis. (⇐) Assume that 2c

Aψ /∈ σ(w).
Thus, by Lemma 12, there is subset E ⊆ E such that ∥E∥A = c and there
is world u ∈ W such that w ∼E\E u and ψ /∈ σ(u). Hence, by the induction
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hypothesis, u ⊮ ψ. Therefore, w ⊮ 2c
Aψ by Definition 6. ⊠

We are now ready to state and to prove the completeness theorem for our
logical system.

Theorem 1. For any formula φ ∈ Φ, if w ⊩ φ for each epistemic world w
of each Kripke model, then ⊢ φ.

Proof. Suppose that ⊬ φ. Let s0 be any maximal consistent subset of Φ
containing formula ¬φ. Consider canonical model K(s0). By Lemma 14,
⟨s0⟩ ⊮ φ. ⊠

6. Conclusion

In this article we proposed a logical framework for reasoning about the
ability of a group of agents to protect privacy of their members at a given cost.
The privacy protection is achieved by eliminating evidence and therefore
hiding knowledge from a privacy intruder. Although throughout the article
we have been assuming that the cost is monetary, the same system could be
used to reason about many other types of cost such as billable time, supply
resources, human resources, etc. The main technical results of this article
are the soundness and the completeness theorems. Perhaps an even more
important contribution of this work, however, is the proposed incorporation
of the cost factor into privacy protection reasoning within the standard modal
logic framework.

A natural extension of this work would be to consider protecting privacy
from multiple privacy intruders. Note that most of the privacy in the real
world is based on the assumption that the agents that have access to private
information do not usually share this information between themselves. For
example, patients usually assume that their doctors do not freely talk with
patients’ lawyers, bankers, and discount store managers. On rare occasion,
however, such conversations happen and this often results in privacy viola-
tions. Thus, one can consider an extension of our logical system in which
different intruders form coalitions similar to those in the setting of Pauly’s
Logic for Coalitional Power [10].

Finally, one can also develop a logical system for reasoning about the cost
of publicizing the information rather than hiding it.
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